Journal of Thermal Analysis and Calorimetry

, Volume 132, Issue 3, pp 1753–1761 | Cite as

Thermal energy storage properties and thermal reliability of PEG/bone char composite as a form-stable phase change material

  • Ruilong Wen
  • Puqi Jia
  • Zhaohui Huang
  • Minghao Fang
  • Yangai Liu
  • Xiaowen Wu
  • Xin Min
  • Wei Gao


Bone char (BC) is a promising porous material that can be used for preparing a form-stable composite phase change material (PCM). In this paper, form-stable polyethylene glycol (PEG 6000)/BC composite PCMs were prepared by impregnation method. The PEG was used as the phase change material, and two different particle sizes of BC (0.8–1 mm: BC-1; 0.25–0.8 mm: BC-2) were acted as the supporting materials. The phase composition and chemical structure of the composite PCMs (PEG/BC-1 and PEG/BC-2) were characterized using X-ray diffraction and Fourier transformation infrared. The results indicated that the PEG can be well impregnated into BC pores with good compatibility. Thermal properties and thermal stability of the composite PCMs were determined by differential scanning calorimeter (DSC) and thermogravimetry analysis (TGA). DSC results showed that the maximum impregnation percentage for PEG into BC-1 and BC-2 was 38.77 and 43.91%, respectively, without melted PCM seepage from the composites. The TGA analysis revealed that the composite PCMs had good thermal stability above their working temperature range. The thermal cycle test of 100 melting–freezing cycles showed that the composite PCMs have good thermal reliability and chemical stability. The form-stable composite PCMs can be used as thermal energy storage material for waste heat storage and solar heating system.


Bone char PEG Form-stable composite PCM Thermal energy storage 



We gratefully acknowledge the China Scholarship Council (CSC) for providing the opportunity to study at the University of Auckland, and the assistance from the group and department. This present work was supported by the National Natural Science Foundations of China (Grant Nos. 51472222, 51372232).


  1. 1.
    Cao L, Tang Y, Fang G. Preparation and properties of shape-stabilized phase change materials based on fatty acid eutectics and cellulose composites for thermal energy storage. Energy. 2015;80:98–103.CrossRefGoogle Scholar
  2. 2.
    Crabtree GW, Lewis NS. Solar energy conversion. Phys Today. 2007;60(3):37–42.CrossRefGoogle Scholar
  3. 3.
    Chen L, Zou R, Xia W, Liu Z, Shang Y, Zhu J, et al. Electro- and photodriven phase change composites based on wax-infiltrated carbon nanotube sponges. ACS Nano. 2012;6(12):10884–92.CrossRefGoogle Scholar
  4. 4.
    Fang G, Li H, Liu X. Preparation and properties of lauric acid/silicon dioxide composites as form-stable phase change materials for thermal energy storage. Mater Chem Phys. 2010;122(2–3):533–6.CrossRefGoogle Scholar
  5. 5.
    Dincer I. On thermal energy storage systems and applications in buildings. Energy Build. 2002;34(4):377–88.CrossRefGoogle Scholar
  6. 6.
    Tyagi VV, Buddhi D. PCM thermal storage in buildings: a state of art. Renew Sustain Energy Rev. 2007;11(6):1146–66.CrossRefGoogle Scholar
  7. 7.
    Kandasamy R, Wang X-Q, Mujumdar AS. Application of phase change materials in thermal management of electronics. Appl Therm Eng. 2007;27(17–18):2822–32.CrossRefGoogle Scholar
  8. 8.
    Cai Y, Gao C, Xu X, Fu Z, Fei X, Zhao Y, et al. Electrospun ultrafine composite fibers consisting of lauric acid and polyamide 6 as form-stable phase change materials for storage and retrieval of solar thermal energy. Sol Energy Mater Sol Cells. 2012;103:53–61.CrossRefGoogle Scholar
  9. 9.
    Karaman S, Karaipekli A, Sarı A, Biçer A. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells. 2011;95(7):1647–53.CrossRefGoogle Scholar
  10. 10.
    Qiu X, Song G, Chu X, Li X, Tang G. Microencapsulated n-alkane with p(n-butyl methacrylate-co-methacrylic acid) shell as phase change materials for thermal energy storage. Sol Energy. 2013;91:212–20.CrossRefGoogle Scholar
  11. 11.
    Gin B, Farid MM. The use of PCM panels to improve storage condition of frozen food. J Food Eng. 2010;100(2):372–6.CrossRefGoogle Scholar
  12. 12.
    Cao L, Tang F, Fang G. Synthesis and characterization of microencapsulated paraffin with titanium dioxide shell as shape-stabilized thermal energy storage materials in buildings. Energy Build. 2014;72:31–7.CrossRefGoogle Scholar
  13. 13.
    Rao ZH, Wang SH, Zhang YL, Zhang GQ, Zhang JY. Thermal properties of paraffin/nano-AlN phase change energy storage materials. Energy Sour Part A Recovery Util Environ Eff. 2014;36(20):2281–6.CrossRefGoogle Scholar
  14. 14.
    Silakhori M, Naghavi M, Metselaar H, Mahlia T, Fauzi H, Mehrali M. Accelerated thermal cycling test of microencapsulated paraffin wax/polyaniline made by simple preparation method for solar thermal energy storage. Materials. 2013;6(5):1608–20.CrossRefGoogle Scholar
  15. 15.
    Karaipekli A, Sarı A. Capric–myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage. Sol Energy. 2009;83(3):323–32.CrossRefGoogle Scholar
  16. 16.
    Jiang Y, Sun Y, Bruno F, Li S. Thermal stability of Na2CO3–Li2CO3 as a high temperature phase change material for thermal energy storage. Thermochim Acta. 2017;650:88–94.CrossRefGoogle Scholar
  17. 17.
    Qian T, Li J, Min X, Guan W, Deng Y, Ning L. Enhanced thermal conductivity of PEG/diatomite shape-stabilized phase change materials with Ag nanoparticles for thermal energy storage. J Mater Chem A. 2015;3(16):8526–36.CrossRefGoogle Scholar
  18. 18.
    Wang W, Yang X, Fang Y, Ding J. Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid–liquid phase change materials. Appl Energy. 2009;86(2):170–4.CrossRefGoogle Scholar
  19. 19.
    Cai Y, Sun G, Liu M, Zhang J, Wang Q, Wei Q. Fabrication and characterization of capric–lauric–palmitic acid/electrospun SiO2 nanofibers composite as form-stable phase change material for thermal energy storage/retrieval. Sol Energy. 2015;118:87–95.CrossRefGoogle Scholar
  20. 20.
    Cao L, Tang F, Fang G. Preparation and characteristics of microencapsulated palmitic acid with TiO2 shell as shape-stabilized thermal energy storage materials. Sol Energy Mater Sol Cells. 2014;123:183–8.CrossRefGoogle Scholar
  21. 21.
    Xu B, Li Z. Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage. Appl Energy. 2013;105:229–37.CrossRefGoogle Scholar
  22. 22.
    Xia L, Zhang P, Wang RZ. Preparation and thermal characterization of expanded graphite/paraffin composite phase change material. Carbon. 2010;48(9):2538–48.CrossRefGoogle Scholar
  23. 23.
    Sarı A, Karaipekli A, Alkan C. Preparation, characterization and thermal properties of lauric acid/expanded perlite as novel form-stable composite phase change material. Chem Eng J. 2009;155(3):899–904.CrossRefGoogle Scholar
  24. 24.
    Li M, Kao H, Wu Z, Tan J. Study on preparation and thermal property of binary fatty acid and the binary fatty acids/diatomite composite phase change materials. Appl Energy. 2011;88(5):1606–12.CrossRefGoogle Scholar
  25. 25.
    Tala W, Chantara S, Thiansem S, Rayanakorn M. Development of low-cost passive sampler from cow bone char for sampling of volatile organic compounds. Int J Environ Sci Technol. 2016;13(7):1685–96.CrossRefGoogle Scholar
  26. 26.
    javad Assari M, Rezaee A, Rangkooy H. Bone char surface modification by nano-gold coating for elemental mercury vapor removal. Appl Surf Sci. 2015;342:106–11.CrossRefGoogle Scholar
  27. 27.
    Rezaee A, Ghanizadeh G, Behzadiyannejad G, Yazdanbakhsh A, Siyadat SD. Adsorption of endotoxin from aqueous solution using bone char. Bull Environ Contam Toxicol. 2009;82(6):732–7.CrossRefGoogle Scholar
  28. 28.
    Chen SB, Zhu YG, Ma YB, McKay G. Effect of bone char application on Pb bioavailability in a Pb-contaminated soil. Environ Pollut. 2006;139(3):433–9.CrossRefGoogle Scholar
  29. 29.
    Medellin-Castillo NA, Leyva-Ramos R, Ocampo-Perez R, Garcia de la Cruz RF, Aragon-Piña A, Martinez-Rosales JM, et al. Adsorption of fluoride from water solution on bone char. Ind Eng Chem Res. 2007;46(26):9205–12.CrossRefGoogle Scholar
  30. 30.
    Chen YN, Chai LY, Shu YD. Study of arsenic (V) adsorption on bone char from aqueous solution. J Hazard Mater. 2008;160(1):168–72.CrossRefGoogle Scholar
  31. 31.
    Patel S, Han J, Qiu W, Gao W. Synthesis and characterisation of mesoporous bone char obtained by pyrolysis of animal bones, for environmental application. J Environ Chem Eng. 2015;3(4):2368–77.CrossRefGoogle Scholar
  32. 32.
    Sarı A, Karaipekli A. Fatty acid esters-based composite phase change materials for thermal energy storage in buildings. Appl Therm Eng. 2012;37:208–16.CrossRefGoogle Scholar
  33. 33.
    Feldman D, Banu D, Hawes D, Ghanbari E. Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard. Sol Energy Mater. 1991;22(2–3):231–42.CrossRefGoogle Scholar
  34. 34.
    Figueiredo M, Fernando A, Martins G, Freitas J, Judas F, Figueiredo H. Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone. Ceram Int. 2010;36(8):2383–93.CrossRefGoogle Scholar
  35. 35.
    Hassan SS, Awwad NS, Aboterika AH. Removal of mercury (II) from wastewater using camel bone charcoal. J Hazard Mater. 2008;154(1–3):992–7.CrossRefGoogle Scholar
  36. 36.
    Jiang Y, Wang B, Meng F, Cheng Y, Zhu C. Microwave-assisted preparation of N-doped carbon dots as a biosensor for electrochemical dopamine detection. J Colloid Interface Sci. 2015;452:199–202.CrossRefGoogle Scholar
  37. 37.
    Lurtwitayaponta S, Srisatit T. Comparison of lead removal by various types of swine bone adsorbents. Environ Asia. 2010;3:32–8.Google Scholar
  38. 38.
    Varma HK, Suresh Babu S. Synthesis of calcium phosphate bioceramics by citrate gel pyrolysis method. Ceram Int. 2005;31(1):109–14.CrossRefGoogle Scholar
  39. 39.
    Tang F, Cao L, Fang G. Preparation and thermal properties of stearic acid/titanium dioxide composites as shape-stabilized phase change materials for building thermal energy storage. Energy Build. 2014;80:352–7.CrossRefGoogle Scholar
  40. 40.
    Khalil SA, Moustafa MA, Ebian AR, Motawi MM. GI absorption of two crystal forms of sulfameter in man. J Pharm Sci. 1972;61(10):1615–7.CrossRefGoogle Scholar
  41. 41.
    Yu S, Wang X, Wu D. Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: synthesis, microstructure, and performance evaluation. Appl Energy. 2014;114:632–43.CrossRefGoogle Scholar
  42. 42.
    Brown JM, Bemis WA. Bone char reactivation. Ind Eng Chem. 1940;32(8):1112–4.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Ruilong Wen
    • 1
    • 3
  • Puqi Jia
    • 2
    • 3
  • Zhaohui Huang
    • 1
  • Minghao Fang
    • 1
  • Yangai Liu
    • 1
  • Xiaowen Wu
    • 1
  • Xin Min
    • 1
  • Wei Gao
    • 3
  1. 1.Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and TechnologyChina University of Geosciences (Beijing)BeijingChina
  2. 2.Department of Nonferrous Metallurgy, School of MetallurgyNortheastern UniversityShenyangChina
  3. 3.Department of Chemical and Materials EngineeringThe University of AucklandAucklandNew Zealand

Personalised recommendations