Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 1, pp 313–319 | Cite as

Enthalpy of formation of carboxylated carbon nanotubes depending on the degree of functionalization

  • E. V. Suslova
  • S. A. Chernyak
  • S. V. Savilov
  • N. E. Strokova
  • V. V. Lunin


Carbon nanotubes (CNTs) with different content of carboxylated groups on their surface (depending on the duration of their treatment with nitric acid) were synthesized. All samples were analyzed by thermal analyses, X-ray photoelectron spectroscopy, Raman and energy-dispersive X-ray spectroscopy, transmission electron microscopy and SBET. The adiabatic bomb calorimetry technique was used for the determination of enthalpy of formation. With the increase in time of treatment from 3 to 9 h, the content of oxygen increased from 7.49 to 8.22 at%. After 15-h treatment in nitric acid, CNTs contained 7.86 at%. The enthalpies of formation of all samples were negative and had nonlinear character. The changes of surface and bulk physicochemical characteristics of oxidized CNTs were analyzed. It was shown that despite decrease in surface enthalpy of formation ∆fH 298(surf.) 0 with the increase in oxygen content, the bulk enthalpy of formation ∆fH 298(bulk) 0 was very sensitive to defectiveness and structure of carbon layers. It resulted in the difficult correlation between oxygen content, morphology, defectiveness and ∆fH 298 0 .


Enthalpy of formation of carbon nanotube Carboxylated carbon nanotubes Bulk enthalpy of formation Surface enthalpy of formation 



The authors are grateful to Dr. K. I. Maslakov for XPS experiments. The authors thank M. V. Lomonosov Moscow State University Program of Development for experimental facilities.

Supplementary material

10973_2017_6930_MOESM1_ESM.docx (80 kb)
Supplementary material 1 (DOCX 79 kb)


  1. 1.
    Ren X, Chen C, Nagatsu M, Wang X. Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J. 2011;170:395–410.CrossRefGoogle Scholar
  2. 2.
    Chernyak SA, Suslova EV, Ivanov AS, Egorov AV, Maslakov KI, Savilov SV, Lunin VV. Co catalysts supported on oxidized CNTs: evolution of structure during preparation, reduction and catalytic test in Fischer-Tropsch synthesis. Appl Cat A. 2016;523:221–9.CrossRefGoogle Scholar
  3. 3.
    Punetha VD, Rana S, Jin YH, Chaurasia A, McLeskey JT, Ramasamy MS, Sekkarapatti M, Sahoo NG, Cho JW, Whan J. Functionalization of carbon nanomaterials for advanced polymer nanocomposites: a comparison study between CNT and graphene. Prog Polym Sci. 2017;67:1–47.CrossRefGoogle Scholar
  4. 4.
    Cao Z, Wei B. A perspective: carbon nanotube macro-films for energy storage. Energy Environ Sci. 2013;6:3183–201.CrossRefGoogle Scholar
  5. 5.
    Suslova EV, Savilov SV, Ni J, Lunin VV, Aldoshin SM. The enthalpies of formation of carbon nanomaterials as a key factor for understanding their structural features. Phys Chem Chem Phys. 2017;19:2269–75.CrossRefGoogle Scholar
  6. 6.
    Cherkasov NB, Savilov SV, Ivanov AS, Lunin VV. Bomb calorimetry as a bulk characterization tool for carbon nanostructures. Carbon. 2013;63:324–9.CrossRefGoogle Scholar
  7. 7.
    Gozzi D, Latini A, Tomellini M. Thermodynamics of cvd synthesis of multiwalled carbon nanotubes: a case study. J Phys Chem C. 2009;113:45–53.CrossRefGoogle Scholar
  8. 8.
    Gozzi D, Iervolino M, Latini A. The thermodynamics of the transformation of graphite to multiwalled carbon nanotubes. J Am Chem Soc. 2007;129:10269–75.CrossRefGoogle Scholar
  9. 9.
    Suslova E, Maslakov K, Savilov S, Ivanov A, Lu L, Lunin V. Study of nitrogen-doped carbon nanomaterials by bomb calorimetry. Carbon. 2016;102:506–12.CrossRefGoogle Scholar
  10. 10.
    Setton R. Carbon nanotubes—II. Cohesion and formation energy of cylindrical nanotubes. Carbon. 1996;34:69–75.CrossRefGoogle Scholar
  11. 11.
    Kabo GJ, Paulechka E, Blokhin AV, Voitkevich OV, Liavitskaya T, Kabo AG. Thermodynamic properties and similarity of stacked-cup multiwall carbon nanotubes and graphite. J Chem Eng Data. 2016;61(11):3849–57.CrossRefGoogle Scholar
  12. 12.
    Mentado-Morales J, Mendoza-Pérez G, De Los Santos-Acosta ÁE, Peralta-Reyes E, Regalado-Méndez A. Energies of combustion and enthalpies of formation of carbon nanotubes. J Therm Anal Calorim. 2017. Scholar
  13. 13.
    Savilov S, Cherkasov N, Kirikova M, Ivanov A, Lunin V. Multiwalled carbon nanotubes and nanofibers: similarities and differences from structural, electronic and chemical concepts; chemical modification for new materials design. Funct Mater Lett. 2010;3:289–94.CrossRefGoogle Scholar
  14. 14.
    Nan Z, Wei C, Yang Q, Tan Z. Thermodynamic properties of carbon nanotubes. J Chem Eng Data. 2009;54:1367–70.CrossRefGoogle Scholar
  15. 15.
    Ros TG, Dillen AJ, Geus JW, Koningsberger DC. Surface oxidation of carbon nanofibres. Chem Eur J. 2002;8(5):1151–62.CrossRefGoogle Scholar
  16. 16.
    Costa G, Shenderova O, Mochalin V, Gogotsi Y, Navrotsky A. Thermochemistry of nanodiamond terminated by oxygen containing functional groups. Carbon. 2014;80:544–50.CrossRefGoogle Scholar
  17. 17.
    Sciazko M. Rank-dependent formation enthalpy of coal. Fuel. 2013;114:2–9.CrossRefGoogle Scholar
  18. 18.
    Chernyak SA, Ivanov AS, Maslakov KI, Egorov AV, Zexiang S, Savilov SV, Lunin VV. Oxidation, defunctionalization and catalyst life cycle of carbon nanotubes: a Raman spectroscopy view. Phys Chem Chem Phys. 2017;19:2276–85.CrossRefGoogle Scholar
  19. 19.
    CODATA. Recommended key values for thermodynamics. J Chem Thermodyn. 1978;10:903–6.Google Scholar
  20. 20.
    Hubbard WN, Scott DW, Waddington G. Reduction to standard states (at 25 °C) of bomb calorimetric data for compounds of carbon, hydrogen, oxygen and sulfur. J Phys Chem. 1954;58(2):152–62.CrossRefGoogle Scholar
  21. 21.
    Chase M. NIST-JANAF themochemical tables. J Phys Chem Ref Data Monogr. 1998;9:1951.Google Scholar
  22. 22.
    Ivanova TM, Maslakov KI, Savilov SV, Ivanov AS, Egorov AV, Linko RV, Lunin VV. Carboxylated and decarboxylated nanotubes studied by X-ray photoelectron spectroscopy. Russ Chem Bull. 2013;62:640–5.CrossRefGoogle Scholar
  23. 23.
    Levchenko AA, Kolesnikov AI, Trofymluk O, Navrotsky A. Energetics of single-wall carbon nanotubes as revealed by calorimetry and neutron scattering. Carbon. 2011;49(3):949–54.CrossRefGoogle Scholar
  24. 24.
    Gozzi D, Latini A, Lazzarini L. Experimental thermodynamics of high temperature transformations in single-walled carbon nanotube bundles. J Am Chem Soc. 2009;131:12474–82.CrossRefGoogle Scholar
  25. 25.
    Rojas A, Martínez M, Amador P, Torres LA. Increasing stability of the fullerenes with the number of carbon atoms: the experimental evidence. J Phys Chem B. 2007;111(30):9031–5.CrossRefGoogle Scholar
  26. 26.
    Sandoval S, Kumar N, Sundaresan A, Rao C, Fuertes A, Tobias G. Enhanced thermal oxidation stability of reduced graphene oxide by nitrogen doping. Chem Eur J. 2014;20:11999–2003.CrossRefGoogle Scholar
  27. 27.
    James R, Huheey E, Keiter E. Inorganic chemistry, principles of structure and reactivity. 4th ed. New York: SIDLAC; 1993.Google Scholar
  28. 28.
    Kargin VA, et al. Enciklopedia polimerov. Mosc Sov Encikl. 1974;2:367.Google Scholar
  29. 29.
    Kokabu T, Inoue S, Matsumura Y. Estimation of adsorption energy for water molecules on a multi-walled carbon nanotube thin film by measuring electric resistance. AIP Adv. 2016;6:115212. Scholar
  30. 30.
    Savilov S, Strokova N, Ivanov A, Arkhipova E, Desyatov A, Hui X, Aldoshin S, Lunin V. Pyrolytic synthesis and characterization of N-doped carbon nanoflakes for electrochemical applications. Mater Res Bull. 2015;69:7–12.CrossRefGoogle Scholar
  31. 31.
    Barton S, Evans MJ, Holland JB, Koresh JE. Water and cyclohexane vapour adsorption on oxidized porous carbon. Carbon. 1984;22:265–72.CrossRefGoogle Scholar
  32. 32.
    Kim P. Experimental and theoretical investigation of adsorption of water vapor on carbon nanotubes. University of Tennessee, Knoxville. Doctoral thesis; 2009.Google Scholar
  33. 33.
    Gubin SA, Maklashova IV, Zakatilova EI. Evaluation of the enthalpy of formation of carbon nanotubes and their phase diagram. Nanotechnol Russ. 2015;10:689–95.CrossRefGoogle Scholar
  34. 34.
    Osswald S, Havel M, Gogotsi Y. Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J Raman Spectrosc. 2007;38:728–36.CrossRefGoogle Scholar
  35. 35.
    Kundu S, Wang Y, Xia W, Muhler M. Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: a quantitative high-resolution XPS and TPD/TPR study. J Phys Chem C. 2008;112(43):16869–78.CrossRefGoogle Scholar
  36. 36.
    Okpalugo TIT, Papakonstantinou P, Murphy H, McLaughlin J, Brown NMD. High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon. 2005;43:153–61.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • E. V. Suslova
    • 1
  • S. A. Chernyak
    • 1
  • S. V. Savilov
    • 1
  • N. E. Strokova
    • 1
  • V. V. Lunin
    • 1
  1. 1.Department of ChemistryLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations