Skip to main content
Log in

Enthalpy of formation of carboxylated carbon nanotubes depending on the degree of functionalization

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) with different content of carboxylated groups on their surface (depending on the duration of their treatment with nitric acid) were synthesized. All samples were analyzed by thermal analyses, X-ray photoelectron spectroscopy, Raman and energy-dispersive X-ray spectroscopy, transmission electron microscopy and SBET. The adiabatic bomb calorimetry technique was used for the determination of enthalpy of formation. With the increase in time of treatment from 3 to 9 h, the content of oxygen increased from 7.49 to 8.22 at%. After 15-h treatment in nitric acid, CNTs contained 7.86 at%. The enthalpies of formation of all samples were negative and had nonlinear character. The changes of surface and bulk physicochemical characteristics of oxidized CNTs were analyzed. It was shown that despite decrease in surface enthalpy of formation ∆fH 0298(surf.) with the increase in oxygen content, the bulk enthalpy of formation ∆fH 0298(bulk) was very sensitive to defectiveness and structure of carbon layers. It resulted in the difficult correlation between oxygen content, morphology, defectiveness and ∆fH 0298 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ren X, Chen C, Nagatsu M, Wang X. Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J. 2011;170:395–410.

    Article  CAS  Google Scholar 

  2. Chernyak SA, Suslova EV, Ivanov AS, Egorov AV, Maslakov KI, Savilov SV, Lunin VV. Co catalysts supported on oxidized CNTs: evolution of structure during preparation, reduction and catalytic test in Fischer-Tropsch synthesis. Appl Cat A. 2016;523:221–9.

    Article  CAS  Google Scholar 

  3. Punetha VD, Rana S, Jin YH, Chaurasia A, McLeskey JT, Ramasamy MS, Sekkarapatti M, Sahoo NG, Cho JW, Whan J. Functionalization of carbon nanomaterials for advanced polymer nanocomposites: a comparison study between CNT and graphene. Prog Polym Sci. 2017;67:1–47.

    Article  CAS  Google Scholar 

  4. Cao Z, Wei B. A perspective: carbon nanotube macro-films for energy storage. Energy Environ Sci. 2013;6:3183–201.

    Article  CAS  Google Scholar 

  5. Suslova EV, Savilov SV, Ni J, Lunin VV, Aldoshin SM. The enthalpies of formation of carbon nanomaterials as a key factor for understanding their structural features. Phys Chem Chem Phys. 2017;19:2269–75.

    Article  CAS  PubMed  Google Scholar 

  6. Cherkasov NB, Savilov SV, Ivanov AS, Lunin VV. Bomb calorimetry as a bulk characterization tool for carbon nanostructures. Carbon. 2013;63:324–9.

    Article  CAS  Google Scholar 

  7. Gozzi D, Latini A, Tomellini M. Thermodynamics of cvd synthesis of multiwalled carbon nanotubes: a case study. J Phys Chem C. 2009;113:45–53.

    Article  CAS  Google Scholar 

  8. Gozzi D, Iervolino M, Latini A. The thermodynamics of the transformation of graphite to multiwalled carbon nanotubes. J Am Chem Soc. 2007;129:10269–75.

    Article  CAS  PubMed  Google Scholar 

  9. Suslova E, Maslakov K, Savilov S, Ivanov A, Lu L, Lunin V. Study of nitrogen-doped carbon nanomaterials by bomb calorimetry. Carbon. 2016;102:506–12.

    Article  CAS  Google Scholar 

  10. Setton R. Carbon nanotubes—II. Cohesion and formation energy of cylindrical nanotubes. Carbon. 1996;34:69–75.

    Article  CAS  Google Scholar 

  11. Kabo GJ, Paulechka E, Blokhin AV, Voitkevich OV, Liavitskaya T, Kabo AG. Thermodynamic properties and similarity of stacked-cup multiwall carbon nanotubes and graphite. J Chem Eng Data. 2016;61(11):3849–57.

    Article  CAS  Google Scholar 

  12. Mentado-Morales J, Mendoza-Pérez G, De Los Santos-Acosta ÁE, Peralta-Reyes E, Regalado-Méndez A. Energies of combustion and enthalpies of formation of carbon nanotubes. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6741-2.

    Article  Google Scholar 

  13. Savilov S, Cherkasov N, Kirikova M, Ivanov A, Lunin V. Multiwalled carbon nanotubes and nanofibers: similarities and differences from structural, electronic and chemical concepts; chemical modification for new materials design. Funct Mater Lett. 2010;3:289–94.

    Article  CAS  Google Scholar 

  14. Nan Z, Wei C, Yang Q, Tan Z. Thermodynamic properties of carbon nanotubes. J Chem Eng Data. 2009;54:1367–70.

    Article  CAS  Google Scholar 

  15. Ros TG, Dillen AJ, Geus JW, Koningsberger DC. Surface oxidation of carbon nanofibres. Chem Eur J. 2002;8(5):1151–62.

    Article  CAS  PubMed  Google Scholar 

  16. Costa G, Shenderova O, Mochalin V, Gogotsi Y, Navrotsky A. Thermochemistry of nanodiamond terminated by oxygen containing functional groups. Carbon. 2014;80:544–50.

    Article  CAS  Google Scholar 

  17. Sciazko M. Rank-dependent formation enthalpy of coal. Fuel. 2013;114:2–9.

    Article  CAS  Google Scholar 

  18. Chernyak SA, Ivanov AS, Maslakov KI, Egorov AV, Zexiang S, Savilov SV, Lunin VV. Oxidation, defunctionalization and catalyst life cycle of carbon nanotubes: a Raman spectroscopy view. Phys Chem Chem Phys. 2017;19:2276–85.

    Article  CAS  PubMed  Google Scholar 

  19. CODATA. Recommended key values for thermodynamics. J Chem Thermodyn. 1978;10:903–6.

  20. Hubbard WN, Scott DW, Waddington G. Reduction to standard states (at 25 °C) of bomb calorimetric data for compounds of carbon, hydrogen, oxygen and sulfur. J Phys Chem. 1954;58(2):152–62.

    Article  CAS  Google Scholar 

  21. Chase M. NIST-JANAF themochemical tables. J Phys Chem Ref Data Monogr. 1998;9:1951.

    Google Scholar 

  22. Ivanova TM, Maslakov KI, Savilov SV, Ivanov AS, Egorov AV, Linko RV, Lunin VV. Carboxylated and decarboxylated nanotubes studied by X-ray photoelectron spectroscopy. Russ Chem Bull. 2013;62:640–5.

    Article  CAS  Google Scholar 

  23. Levchenko AA, Kolesnikov AI, Trofymluk O, Navrotsky A. Energetics of single-wall carbon nanotubes as revealed by calorimetry and neutron scattering. Carbon. 2011;49(3):949–54.

    Article  CAS  Google Scholar 

  24. Gozzi D, Latini A, Lazzarini L. Experimental thermodynamics of high temperature transformations in single-walled carbon nanotube bundles. J Am Chem Soc. 2009;131:12474–82.

    Article  CAS  PubMed  Google Scholar 

  25. Rojas A, Martínez M, Amador P, Torres LA. Increasing stability of the fullerenes with the number of carbon atoms: the experimental evidence. J Phys Chem B. 2007;111(30):9031–5.

    Article  CAS  PubMed  Google Scholar 

  26. Sandoval S, Kumar N, Sundaresan A, Rao C, Fuertes A, Tobias G. Enhanced thermal oxidation stability of reduced graphene oxide by nitrogen doping. Chem Eur J. 2014;20:11999–2003.

    Article  CAS  PubMed  Google Scholar 

  27. James R, Huheey E, Keiter E. Inorganic chemistry, principles of structure and reactivity. 4th ed. New York: SIDLAC; 1993.

    Google Scholar 

  28. Kargin VA, et al. Enciklopedia polimerov. Mosc Sov Encikl. 1974;2:367.

    Google Scholar 

  29. Kokabu T, Inoue S, Matsumura Y. Estimation of adsorption energy for water molecules on a multi-walled carbon nanotube thin film by measuring electric resistance. AIP Adv. 2016;6:115212. https://doi.org/10.1063/1.4967784.

    Article  CAS  Google Scholar 

  30. Savilov S, Strokova N, Ivanov A, Arkhipova E, Desyatov A, Hui X, Aldoshin S, Lunin V. Pyrolytic synthesis and characterization of N-doped carbon nanoflakes for electrochemical applications. Mater Res Bull. 2015;69:7–12.

    Article  CAS  Google Scholar 

  31. Barton S, Evans MJ, Holland JB, Koresh JE. Water and cyclohexane vapour adsorption on oxidized porous carbon. Carbon. 1984;22:265–72.

    Article  CAS  Google Scholar 

  32. Kim P. Experimental and theoretical investigation of adsorption of water vapor on carbon nanotubes. University of Tennessee, Knoxville. Doctoral thesis; 2009.

  33. Gubin SA, Maklashova IV, Zakatilova EI. Evaluation of the enthalpy of formation of carbon nanotubes and their phase diagram. Nanotechnol Russ. 2015;10:689–95.

    Article  CAS  Google Scholar 

  34. Osswald S, Havel M, Gogotsi Y. Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J Raman Spectrosc. 2007;38:728–36.

    Article  CAS  Google Scholar 

  35. Kundu S, Wang Y, Xia W, Muhler M. Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: a quantitative high-resolution XPS and TPD/TPR study. J Phys Chem C. 2008;112(43):16869–78.

    Article  CAS  Google Scholar 

  36. Okpalugo TIT, Papakonstantinou P, Murphy H, McLaughlin J, Brown NMD. High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon. 2005;43:153–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. K. I. Maslakov for XPS experiments. The authors thank M. V. Lomonosov Moscow State University Program of Development for experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Suslova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suslova, E.V., Chernyak, S.A., Savilov, S.V. et al. Enthalpy of formation of carboxylated carbon nanotubes depending on the degree of functionalization. J Therm Anal Calorim 133, 313–319 (2018). https://doi.org/10.1007/s10973-017-6930-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6930-z

Keywords

Navigation