Journal of Thermal Analysis and Calorimetry

, Volume 132, Issue 2, pp 1359–1365 | Cite as

Pyrolysis characteristics of cellulose derived from moso bamboo and poplar

  • Fang Liang
  • Tao Zhang
  • Hongzhong Xiang
  • Xiaomeng Yang
  • Wanhe Hu
  • Bingbing Mi
  • Zhijia Liu
Article
  • 45 Downloads

Abstract

To compare with pyrolysis characteristics of cellulose from moso bamboo and poplar, samples were pyrolyzed with different heating rates through thermogravimetric analysis (TG). The kinetics was calculated by Kissinger–Akahira–Sunose method. The results showed that pyrolysis process of moso bamboo and poplar fiber included three stages, and the main pyrolysis occurred in the second step. Moso bamboo fiber had a higher start temperature, a lower end temperature and a more mass loss at each heating rate in the main pyrolysis stage. With increase in heating rate, the temperature corresponding to the maximum of mass loss increased and the DTG curve shifted to higher temperature. The reaction rates varied at different heating rates. The activation energy of cellulose from moso bamboo was lower than poplar cellulose, indicating cellulose of moso bamboo was easier to be pyrolyzed. The results from this research will provide guidance to thermal conversion of moso bamboo and poplar.

Keywords

Moso bamboo Poplar Cellulose Pyrolysis Kinetics 

Notes

Acknowledgements

This research was financially supported by ‘13th Five Years Plan Study on manufacturing technology of bamboo wastes and its mechanism (Grant No. 2016YFD0600906) and ‘Basic Scientific Research Funds of International Centre for Bamboo and Rattan-Co-firing technology of torrefied bamboo and coal’ (Grant No. 1632016011).

References

  1. 1.
    Gottipati R, Mishra S. A kinetic study on pyrolysis and combustion characteristics of oil cakes: effect of cellulose and lignin content. J Fuel Chem Technol. 2011;39:265–70.CrossRefGoogle Scholar
  2. 2.
    Wang J, Chen M, Zhang MX, Min FF, Chen MG. Three kinds of biomass pyrolysis dynamics research. J Harbin Instit Technol. 2009;41:180–3.Google Scholar
  3. 3.
    Wilk M, Magdziarz A. Hydrothermal carbonization, torrefaction and slow pyrolysis of Miscanthus giganteus. Energy. 2017;140:1292–304.CrossRefGoogle Scholar
  4. 4.
    Rath J, Steiner G, Wolfinger MG. Tar cracking from fast pyrolysis of large beech wood particles. J Anal Appl Pyrolysis. 2002;62:83–92.CrossRefGoogle Scholar
  5. 5.
    Branca C, Di Blasi C. A unified mechanism of the combustion reactions of lignocellulosic fuels. Thermochim Acta. 2013;565:58–64.CrossRefGoogle Scholar
  6. 6.
    Ozawa T. A new method of analyzing thermogravimetric data. B Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  7. 7.
    Friedman HL. New methods for evaluating kinetic parameters from thermal analysis data. J Polym Sci Polym Chem. 1969;7:41–6.Google Scholar
  8. 8.
    Sánchez JD, Ramírez GE, Barajas MJ. Comparative kinetic study of the pyrolysis of mandarin and pineapple peel. J Anal Appl Pyrolysis. 2016;118:192–201.CrossRefGoogle Scholar
  9. 9.
    Jeguirim M, Bikai J, Elmay Y, Limousy L, Njeugan E. Thermal characterization and pyrolysis kinetics of tropical biomass feedstocks for energy recovery. Energy Sustain Dev. 2014;23:188–93.CrossRefGoogle Scholar
  10. 10.
    Rocha EPA, Sermyagina E, Vakkilainen E, Colodette JL, Oliverira LM, Cardoso M. Kinetics of pyrolysis of some biomasses widely available in Brazil. J Therm Anal Calorim. 2017;130:1445–54.CrossRefGoogle Scholar
  11. 11.
    Wang J, Chen M, Zhang MX, Min FF, Chen MG. Kinetic study on thermolysis of three different biomass species. J Harbin Inst Technol. 2009;7:187–90.Google Scholar
  12. 12.
    Shih YF. A study of the fiber obtained from the water bamboo husks. Bioresour Technol. 2007;98:819–28.CrossRefGoogle Scholar
  13. 13.
    Liu X, Yu W. Evaluating the thermal stability of high performance fibers by TGA. J Appl Polym Sci. 2006;99:937–44.CrossRefGoogle Scholar
  14. 14.
    Wang LL, Zhang DS, Hong Z. An analysis on the characteristics of pyrogenation and carbonization shrinkage of bamboo timber. J Bamboo Res. 2005;3:034–8.Google Scholar
  15. 15.
    Wan X, Jiang X. Comprehensive utilization of bamboo surplus material by processing. Technol Dev Enterp. 2006;7:073–5.Google Scholar
  16. 16.
    Lin SZ, Zhang ZY, Zhang Q, Lin YZ. Progress in the study of molecular genetic improvements of poplar in China. J Integr Plant Biol. 2006;48:1001–7.CrossRefGoogle Scholar
  17. 17.
    Fang SZ. Silviculture of poplar plantation in China: a review. J Appl Ecol. 2008;19:2308–16.Google Scholar
  18. 18.
    Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Lappas AA. A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis. 2014;105:143–50.CrossRefGoogle Scholar
  19. 19.
    Garcia-Maraver A, Perez-Jimenez JA, Serrano-Bernardo F, Zamorano M. Determination and comparison of combustion kinetics parameters of agricultural biomass from olive trees. Renew Energy. 2015;83:897–904.CrossRefGoogle Scholar
  20. 20.
    Mani T, Murugan P, Abedi J, Mahinpey N. Pyrolysis of wheat straw in a thermogravimetric analyzer: effect of particle size and heating rate on devolatilization and estimation of global kinetics. Chem Eng Res Des. 2010;88:952–8.CrossRefGoogle Scholar
  21. 21.
    Anca-Couce A, Berger A, Zobel N. How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme. Fuel. 2014;123:230–40.CrossRefGoogle Scholar
  22. 22.
    Kim SS, Kim J, Park YH, Park YK. Pyrolysis kinetics and decomposition characteristics of pine trees. Bioresour Technol. 2010;101:9797–802.CrossRefGoogle Scholar
  23. 23.
    Shen DK, Gu S. The mechanism for thermal decomposition of cellulose and its main products. Bioresour Technol. 2009;100:6496–504.CrossRefGoogle Scholar
  24. 24.
    Agrawal A, Chakraborty S. A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis. Bioresour Technol. 2013;128:72–80.CrossRefGoogle Scholar
  25. 25.
    Khawam A. Application of solid-state kinetics to desolvation reactions. 2007.Google Scholar
  26. 26.
    Magdziarz A, Wilk M, Straka R. Combustion process of torrefied wood biomass. J Therm Anal Calorim. 2017;127:1339–49.CrossRefGoogle Scholar
  27. 27.
    Ceylan S, Topçu Y. Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Bioresour Technol. 2014;156:182–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Fang Liang
    • 1
  • Tao Zhang
    • 1
  • Hongzhong Xiang
    • 1
  • Xiaomeng Yang
    • 1
  • Wanhe Hu
    • 1
  • Bingbing Mi
    • 1
  • Zhijia Liu
    • 1
  1. 1.International Centre for Bamboo and RattanBeijingChina

Personalised recommendations