Skip to main content
Log in

Second law of thermodynamic analysis for nanofluid turbulent flow around a rotating cylinder

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper performs an entropy generation analysis for nanofluid turbulent flow around a rotating cylinder. A finite volume method based on SST kω turbulence model is employed to solve the governing equations and calculate the viscous and thermal entropy generations. The effects of different parameters containing the non-dimensional rotation rate, nanoparticle concentration, and Reynolds number on the viscous and thermal entropy generations and Bejan number are investigated. The obtained results indicate that there is an optimal non-dimensional rotation ratio at α = 1.5 as it has the minimal viscous entropy generation among other values of α. The viscous entropy generation seems to be enveloped around the cylinder. Finally, the viscous entropy generation is dominant in most of the domain except at the regions with an upward drift and a thin layer around the cylinder wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Surface of domain (m2)

B c :

Boltzmann constant (–)

C :

Specific heat (J kg−1 K−1)

C p :

Specific heat at constant pressure (J kg−1 K−1)

D :

Cylinder diameter (m)

d f :

Molecular diameter of base fluid (nm)

d p :

Nanoparticle diameter (nm)

h :

Heat transfer coefficient (W m−2 K−1)

k :

Turbulent kinetic energy(m−2 s−2)

l BF :

Mean free path of water (–)

\(N_{\text{g,thermal}}\) :

Non-dimensional thermal entropy generations (–)

\(N_{\text{g,viscous}}\) :

Non-dimensional viscous entropy generations (–)

N :

Mean non-dimensional entropy generation rate (–)

Nu :

Nusselt number (–)

p :

Pressure (Pa)

Pr :

Prandtl number (–)

Re :

Flow Reynolds number (–)

\(S_{\text{g,thermal}}^{{{\prime \prime \prime }}}\) :

Thermal entropy generation rate (W m−3 K−1)

\(S_{\text{g,viscous}}^{{{\prime \prime \prime }}}\) :

Viscous entropy generation rate (W m−3 K−1)

t :

Time (s)

T :

Temperature (K)

x :

Streamwise dimension of coordinates (m)

y :

Cross-stream dimension of coordinates (m)

u :

Streamwise velocity (m s−1)

v :

Cross-stream velocity (m s−1)

u i, u j :

Velocity components (m s−1)

\(\infty\) :

Free stream (–)

φ :

Volume fraction (–)

θ :

Angular displacement from the front stagnation point (°)

μ :

Fluid dynamic viscosity (kg m−1 s−1)

υ :

Fluid kinematic viscosity (m2 s−1)

ρ :

Fluid density (kg m−3)

α :

Thermal diffusivity of fluid (m2 s−1), non-dimensional rotation rate (–)

λ :

Thermal conductivity (W m−1 K−1)

δ :

Distance between particles (nm)

ω :

Angular velocity of the rotating cylinder (rad s−1), specific rate of dissipation (s−1)

\(\Gamma _{\text{k}}\) :

Effective diffusivity of k (m s−2)

\(\Gamma _{\text{w}}\) :

Effective diffusivity of ω (m s−2)

τ ij :

Deviatoric stress tensor (kg m−1 s−2)

ave:

Average

B:

Brownian

eff:

Effective

f:

Base fluid

p:

Particle, pressure

s:

Solid

T:

Turbulent

v:

Viscous

w:

Wall, pure water

References

  1. Kendoush AA. An approximate solution of the convective heat transfer from an isothermal rotating cylinder. Int J Heat Fluid Flow. 1996;17(4):439–41.

    Article  CAS  Google Scholar 

  2. Paramane SB, Sharma A. Numerical investigation of heat and fluid flow across a rotating circular cylinder maintained at constant temperature in 2-D laminar flow regime. Int J Heat Mass Transf. 2009;52(13):3205–16.

    Article  Google Scholar 

  3. Ma H, Zhou W, Lu X, Ding Z, Cao Y, Deng N, et al. Investigation on the air flow and heat transfer from a horizontal rotating cylinder. Int J Therm Sci. 2015;95:21–8.

    Article  Google Scholar 

  4. Shirejini SZ, Rashidi S, Esfahani J. Recovery of drop in heat transfer rate for a rotating system by nanofluids. J Mol Liq. 2016;220:961–9.

    Article  CAS  Google Scholar 

  5. Roslan R, Saleh H, Hashim I. Effect of rotating cylinder on heat transfer in a square enclosure filled with nanofluids. Int J Heat Mass Transf. 2012;55(23):7247–56.

    Article  CAS  Google Scholar 

  6. Turkyilmazoglu M. Nanofluid flow and heat transfer due to a rotating disk. Comput Fluids. 2014;94:139–46.

    Article  CAS  Google Scholar 

  7. Sheikholeslami M, Ganji D. Three dimensional heat and mass transfer in a rotating system using nanofluid. Powder Technol. 2014;253:789–96.

    Article  CAS  Google Scholar 

  8. Ellahi R, Hassan M, Zeeshan A. A study of heat transfer in power law nanofluid. Therm Sci. 2015;20(6):2015–26.

    Article  Google Scholar 

  9. Ellahi R, Hassan M, Zeeshan A, Khan AA. The shape effects of nanoparticles suspended in HFE-7100 over wedge with entropy generation and mixed convection. Appl Nanosci. 2016;6(5):641–51.

    Article  CAS  Google Scholar 

  10. Ellahi R, Hassan M, Zeeshan A. Aggregation effects on water base Al2O3-nanofluid over permeable wedge in mixed convection. Asia-Pac J Chem Eng. 2016;11(2):179–86.

    Article  CAS  Google Scholar 

  11. Rahman S, Ellahi R, Nadeem S, Zia QZ. Simultaneous effects of nanoparticles and slip on Jeffrey fluid through tapered artery with mild stenosis. J Mol Liq. 2016;218:484–93.

    Article  CAS  Google Scholar 

  12. Shehzad N, Zeeshan A, Ellahi R, Vafai K. Convective heat transfer of nanofluid in a wavy channel: Buongiorno’s mathematical model. J Mol Liq. 2016;222:446–55.

    Article  CAS  Google Scholar 

  13. Ellahi R, Ellahi R, Zeeshan A, Zeeshan A, Hassan M, Hassan M. Particle shape effects on Marangoni convection boundary layer flow of a nanofluid. Int J Numer Methods Heat Fluid Flow. 2016;26(7):2160–74.

    Article  Google Scholar 

  14. Bhatti MM, Zeeshan A, Ellahi R. Endoscope analysis on peristaltic blood flow of Sisko fluid with Titanium magneto-nanoparticles. Comput Biol Med. 2016;78:29–41.

    Article  CAS  Google Scholar 

  15. Sheikholeslami M, Zia Q, Ellahi R. Influence of induced magnetic field on free convection of nanofluid considering Koo-Kleinstreuer-Li (KKL) correlation. Appl Sci. 2016;6(11):324.

    Article  Google Scholar 

  16. Ellahi R, Zeeshan A, Hassan M. A study of Fe3O4 nanoparticles aggregation in engine oil base nanofluid over the vertical stretching of a permeable sheet in a mixed convection. J Zhejiang Univ Sci A. 2016.

  17. Bhatti M, Zeeshan A, Ellahi R. Simultaneous effects of coagulation and variable magnetic field on peristaltically induced motion of Jeffrey nanofluid containing gyrotactic microorganism. Microvasc Res. 2017;110:32–42.

    Article  CAS  Google Scholar 

  18. Ellahi R, Tariq M, Hassan M, Vafai K. On boundary layer nano-ferroliquid flow under the influence of low oscillating stretchable rotating disk. J Mol Liq. 2017;229:339–45.

    Article  CAS  Google Scholar 

  19. Rashidi S, Esfahani JA, Ellahi R. Convective heat transfer and particle motion in an obstructed duct with two side by side obstacles by means of DPM model. Appl Sci. 2017;7(4):431.

    Article  Google Scholar 

  20. Hassan M, Zeeshan A, Majeed A, Ellahi R. Particle shape effects on ferrofuids flow and heat transfer under influence of low oscillating magnetic field. J Magn Magn Mater. 2017;443:36–44.

    Article  CAS  Google Scholar 

  21. Minea AA. Numerical studies on heat transfer enhancement in different closed enclosures heated symmetrically. J Therm Anal Calorim. 2015;121(2):711–20.

    Article  CAS  Google Scholar 

  22. Meibodi SS, Kianifar A, Mahian O, Wongwises S. Second law analysis of a nanofluid-based solar collector using experimental data. J Therm Anal Calorim. 2016;126(2):617–25.

    Article  CAS  Google Scholar 

  23. Bahiraei M. A numerical study of heat transfer characteristics of CuO–water nanofluid by Euler–Lagrange approach. J Therm Anal Calorim. 2016;123(2):1591–9.

    Article  CAS  Google Scholar 

  24. Pourfayaz F, Sanjarian N, Kasaeian A, Astaraei FR, Sameti M, Nasirivatan S. An experimental comparison of SiO2/water nanofluid heat transfer in square and circular cross-sectional channels. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6500-4.

    Google Scholar 

  25. Minea AA. Comparative study of turbulent heat transfer of nanofluids. J Therm Anal Calorim. 2016;124(1):407–16.

    Article  CAS  Google Scholar 

  26. Estellé P, Halelfadl S, Maré T. Thermophysical properties and heat transfer performance of carbon nanotubes water-based nanofluids. J Therm Anal Calorim. 2017;127(3):2075–81.

    Article  Google Scholar 

  27. Estellé P, Mahian O, Maré T, Öztop HF. Natural convection of CNT water-based nanofluids in a differentially heated square cavity. J Therm Anal Calorim. 2017;128(3):1765–70.

    Article  Google Scholar 

  28. Esfe MH, Behbahani PM, Arani AAA, Sarlak MR. Thermal conductivity enhancement of SiO2–MWCNT (85: 15%)–EG hybrid nanofluids. J Therm Anal Calorim. 2017;128(1):249–58.

    Article  Google Scholar 

  29. Esfahani J, Akbarzadeh M, Rashidi S, Rosen M, Ellahi R. Influences of wavy wall and nanoparticles on entropy generation over heat exchanger plat. Int J Heat Mass Transf. 2017;109:1162–71.

    Article  CAS  Google Scholar 

  30. A/K Abu-Hijleh B. Entropy generation in laminar convection from an isothermal cylinder in cross flow. Energy. 1998;23(10):851–7.

    Article  Google Scholar 

  31. Eger T, Bol T, Daróczy L, Janiga G, Schroth R, Thévenin D. Numerical investigations of entropy generation to analyze and improve heat transfer processes in electric machines. Int J Heat Mass Transf. 2016;102:1199–208.

    Article  Google Scholar 

  32. Parsazadeh M, Mohammed H, Fathinia F. Influence of nanofluid on turbulent forced convective flow in a channel with detached rib-arrays. Int Commun Heat Mass Transf. 2013;46:97–105.

    Article  CAS  Google Scholar 

  33. Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994;32(8):1598–605.

    Article  Google Scholar 

  34. Valipour MS, Masoodi R, Rashidi S, Bovand M, Mirhosseini M. A numerical study on convection around a square cylinder using Al2O3-H2O nanofluid. Therm Sci. 2014;18(4):1305–14.

    Article  Google Scholar 

  35. Zhou S-Q, Ni R. Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl Phys Lett. 2008;92(9):093123.

    Article  Google Scholar 

  36. Masoumi N, Sohrabi N, Behzadmehr A. A new model for calculating the effective viscosity of nanofluids. J Phys D Appl Phys. 2009;42(5):055501.

    Article  Google Scholar 

  37. Chon CH, Kihm KD, Lee SP, Choi SU. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett. 2005;87(15):153107.

    Article  Google Scholar 

  38. Patankar SV. Numerical heat transfer and fluid flow. New York: Hemisphere; 1980. p. 25–73.

    Google Scholar 

  39. Peller H, Lippig V, Straub D, Waibel R. Thermofluiddynamic experiments with a heated and rotating circular cylinder in crossflow. Exp Fluids. 1984;2(3):113–20.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Office of the Vice Chancellor for Research, Ferdowsi University of Mashhad, under Grant No. 43872.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Abolfazli Esfahani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akar, S., Rashidi, S. & Esfahani, J.A. Second law of thermodynamic analysis for nanofluid turbulent flow around a rotating cylinder. J Therm Anal Calorim 132, 1189–1200 (2018). https://doi.org/10.1007/s10973-017-6907-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6907-y

Keywords

Navigation