Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 1, pp 703–712 | Cite as

Towards a meaningful non-isothermal kinetics for biomass materials and other complex organic samples

Article
  • 177 Downloads

Abstract

The literature of the kinetics in thermal analysis deals mainly with models that consist of a single reaction equation. However, most samples with practical importance are too complex for such an oversimplified description. There is no universal way to overcome the difficulties, though there are well-established models that can express the complexity of the studied reactions for several important types of samples. The assumption of more than one reaction increases the number of unknown parameters. Their reliable estimation requests the evaluation of a series of experiments. The various linearization techniques cannot be employed in such cases, while the method of least squares can be carried out at any complexity of the models by proper numerical methods. It is advantageous to evaluate simultaneously experiments with linear and nonlinear temperature programs because a set of constant heating rate experiments is frequently not sufficient to distinguish between different models or model variants. It is well worth including modulated and constant reaction rate temperature programs into the evaluated series whenever they are obtainable. Sometimes different samples share some common features. In such cases one can try to describe their reactions by assuming parts of the kinetic parameters to be common for the samples. One should base the obtained models and parameter values on a sufficiently large amount of experimental information, in a reliable way. This article is based on the authors’ experience in the indicated directions from 1979 till the present. Though the examples shown are taken from biomass research, the models and methods shown in the article are also hoped to be relevant for other materials that have complicated structure or exhibit complicated thermal reactions, or both.

Keywords

Non-isothermal reaction kinetics Thermal analysis Complex kinetic models Method of least squares Modulated experiments Biomass Charcoal 

Notes

Acknowledgements

The authors acknowledge the financial support by the Research Council of Norway and a number of industrial partners through the project BioCarb + (“Enabling the Biocarbon Value Chain for Energy”).

References

  1. 1.
    Várhegyi G. Kinetic evaluation of non-isothermal thermoanalytical curves in the case of independent reactions. Thermochim Acta. 1979;28:367–76.  https://doi.org/10.1016/0040-6031(79)85140-0.CrossRefGoogle Scholar
  2. 2.
    Braun RL, Burnham AK. Analysis of chemical reaction kinetics using a distribution of activation energies and simpler models. Energy Fuels. 1987;1:153–61.  https://doi.org/10.1021/ef00002a003.CrossRefGoogle Scholar
  3. 3.
    Anthony DB, Howard JB, Hottel HC, Meissner HP. Rapid devolatilization of pulverized coal. In: Symposium (international) on combustion 1975 Jan 1. Elsevier; (Vol. 15, No. 1, pp. 1303–1317).  https://doi.org/10.1016/s0082-0784(75)80392-4.
  4. 4.
    Burnham AK, Braun RL, Gregg HR, Samoun AM. Comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic parameters. Energy Fuels. 1987;1(452):458.  https://doi.org/10.1021/ef00006a001.Google Scholar
  5. 5.
    Burnham AK, Oh MS, Crawford RW, Samoun AM. Pyrolysis of Argonne premium coals: activation energy distributions and related chemistry. Energy Fuels. 1989;3:42–55.  https://doi.org/10.1021/ef00013a008.CrossRefGoogle Scholar
  6. 6.
    Sundararaman P, Merz PH, Mann RG. Determination of kerogen activation energy distribution. Energy Fuels. 1992;6:793–803.  https://doi.org/10.1021/ef00036a015.CrossRefGoogle Scholar
  7. 7.
    Várhegyi G, Szabó P, Mok WSL, Antal MJ Jr. Kinetics of the thermal decomposition of cellulose in sealed vessels at elevated pressures. Effects of the presence of water on the reaction mechanism. J Anal Appl Pyrol. 1993;26:159–74.  https://doi.org/10.1016/0165-2370(93)80064-7.CrossRefGoogle Scholar
  8. 8.
    Várhegyi G, Jakab E, Antal MJ Jr. Is the Broido–Shafizadeh model for cellulose pyrolysis true? Energy Fuels. 1994;8:1345–52.  https://doi.org/10.1021/ef00048a025.CrossRefGoogle Scholar
  9. 9.
    Várhegyi G, Szabó P, Jakab E, Till F, Richard J-R. Mathematical modeling of char reactivity in Ar–O2 and CO2–O2 mixtures. Energy Fuels. 1996;10:1208–14.  https://doi.org/10.1021/ef950252z.CrossRefGoogle Scholar
  10. 10.
    Conesa JA, Caballero J, Marcilla A, Font R. Analysis of different kinetic models in the dynamic pyrolysis of cellulose. Thermochim Acta. 1995;254:175–92.  https://doi.org/10.1016/0040-6031(94)02102-T.CrossRefGoogle Scholar
  11. 11.
    Conesa JA, Marcilla A, Font R, Caballero JA. Thermogravimetric studies on the thermal decomposition of polyethylene. J Anal Appl Pyrol. 1996;36:1–5.  https://doi.org/10.1016/0165-2370(95)00917-5.CrossRefGoogle Scholar
  12. 12.
    Várhegyi G, Antal MJ Jr, Szabó P, Jakab E, Till F. Application of complex reaction kinetic models in thermal analysis. The least squares evaluation of series of experiments. J Thermal Anal. 1996;47:535–42.  https://doi.org/10.1007/bf01983995.CrossRefGoogle Scholar
  13. 13.
    Barta-Rajnai E, Várhegyi G, Wang L, Skreiberg Ø, Grønli M, Czégény Zs. Thermal decomposition kinetics of wood and bark and their torrefied products. Energy Fuels. 2017;31:4024–34.  https://doi.org/10.1021/acs.energyfuels.6b03419.CrossRefGoogle Scholar
  14. 14.
    Tapasvi D, Khalil R, Várhegyi G, Tran K-Q, Grønli M, Skreiberg Ø. Thermal decomposition kinetics of woods with an emphasis on torrefaction. Energy Fuels. 2013;27:6134–45.  https://doi.org/10.1021/ef4016075.CrossRefGoogle Scholar
  15. 15.
    Becidan M, Várhegyi G, Hustad JE, Skreiberg Ø. Thermal decomposition of biomass wastes. A kinetic study. Ind Eng Chem Res. 2007;46:2428–37.  https://doi.org/10.1021/ie061468z.CrossRefGoogle Scholar
  16. 16.
    Tapasvi D, Khalil R, Várhegyi G, Skreiberg Ø, Tran K-Q, Grønli M. Kinetic behavior of torrefied biomass in an oxidative environment. Energy Fuels. 2013;27:1050–60.  https://doi.org/10.1021/ef3019222.CrossRefGoogle Scholar
  17. 17.
    Wang L, Sandquist J, Várhegyi G, Matas Güell B. CO2 gasification of chars prepared from wood and forest residue. A kinetic study. Energy Fuels. 2013;27:6098–107.  https://doi.org/10.1021/ef401118f.CrossRefGoogle Scholar
  18. 18.
    Wang L, Várhegyi G, Skreiberg Ø. CO2 gasification of torrefied wood. A kinetic study. Energy Fuels. 2014;28:7582–90.  https://doi.org/10.1021/ef502308e.CrossRefGoogle Scholar
  19. 19.
    Wang L, Várhegyi G, Skreiberg Ø, Li T, Grønli M, Antal MJ. Combustion characteristics of biomass charcoals produced at different carbonization conditions. A kinetic study. Energy Fuels. 2016;30:3186–97.  https://doi.org/10.1021/acs.energyfuels.6b00354.CrossRefGoogle Scholar
  20. 20.
    Avni E, Coughlin RW, Solomon PR, King HH. Mathematical modelling of lignin pyrolysis. Fuel. 1985;64:1495–501.  https://doi.org/10.1016/0016-2361(85)90362-X.CrossRefGoogle Scholar
  21. 21.
    Jakab E, Faix O, Till F. Thermal decomposition of milled wood lignins studied by thermogravimetry/mass spectrometry. J Anal Appl Pyrol. 1997;40:171–86.  https://doi.org/10.1016/S0165-2370(97)00046-6.CrossRefGoogle Scholar
  22. 22.
    Vyazovkin S. Computational aspects of kinetic analysis. Part C. The ICTAC Kinetics Project—the light at the end of the tunnel? Thermochim Acta. 2000;355:155–63.  https://doi.org/10.1016/S0040-6031(00)00445-7.CrossRefGoogle Scholar
  23. 23.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Polym Symp. 1964;6:183–95.  https://doi.org/10.1002/polc.5070060121.CrossRefGoogle Scholar
  24. 24.
    Miura K, Maki T. A simple method for estimating f(E) and k0(E) in the distributed activation energy model. Energy Fuels. 1998;12:864–9.  https://doi.org/10.1021/ef970212q.CrossRefGoogle Scholar
  25. 25.
    Conesa JA, Rey L, Aracil I. Modeling the thermal decomposition of automotive shredder residue. J Therm Anal Calorim. 2016;124:317–27.  https://doi.org/10.1007/s10973-015-5143-6.CrossRefGoogle Scholar
  26. 26.
    Conesa JA, Soler A. Decomposition kinetics of materials combining biomass and electronic waste. J Therm Anal Calorim. 2017;128:225–33.  https://doi.org/10.1007/s10973-016-5900-1.CrossRefGoogle Scholar
  27. 27.
    Yang J, Chen H, Zhao W, Zhou J. Combustion kinetics and emission characteristics of peat by using TG–FTIR technique. J Therm Anal Calorim. 2016;124:519–28.  https://doi.org/10.1007/s10973-015-5168-x.CrossRefGoogle Scholar
  28. 28.
    Plis A, Kotyczka-Morańska M, Kopczyński M, Łabojko G. Furniture wood waste as a potential renewable energy source. J Therm Anal Calorim. 2016;125:1357–71.  https://doi.org/10.1007/s10973-016-5611-7.CrossRefGoogle Scholar
  29. 29.
    Nishikawa K, Ueta Y, Hara D, Yamada S, Koga N. Kinetic characterization of multistep thermal oxidation of carbon/carbon composite in flowing air. J Therm Anal Calorim. 2017;128:891–906.  https://doi.org/10.1007/s10973-016-5993-6.CrossRefGoogle Scholar
  30. 30.
    Arhangelskii I, Dunaev A, Makarenko I, Tikhonov N, Belyaev S, Tarasov A. Non-isothermal kinetic methods: workbook and laboratory manual. Berlin: Edition Open Access. 2013. Downloadable from internet address http://edition-open-access.de/textbooks/1/index.html.
  31. 31.
    Cruz G, Crnkovic PM. Investigation into the kinetic behavior of biomass combustion under N2/O2 and CO2/O2 atmospheres. J Therm Anal Calorim. 2016;123:1003–11.  https://doi.org/10.1007/s10973-015-4908-2.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Institute of Materials and Environmental Chemistry, Research Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary
  2. 2.SINTEF Energy ResearchTrondheimNorway

Personalised recommendations