The effect of metakaolin upon the formation of ettringite in metakaolin–lime–gypsum ternary systems

  • Martin Palou
  • Eva Kuzielová
  • Matúš Žemlička
  • Radoslav Novotný
  • Jiří Másilko


The present study reports the results of investigation on the role of metakaolin in the formation of ettringite in a model relevant to Portland cement. The model consists of ternary system (Trio) metakaolin–lime–gypsum. Five samples of defined ternary system were cured at different temperatures 20, 30, 40, 50 and 60 °C. Conduction calorimeter TAM AIR was mainly used to capture heat evolution at different temperatures. Thermoanalytical (simultaneous TGA/DSC) and X-ray diffraction methods were used to identify different products after curing. It results that ettringite is the main hydration product supplemented by calcium silicate and calcium aluminosilicate hydrates according to sample composition. The mechanism and kinetics of hydration, as displayed by calorimetric curves, depend on composition of samples and curing temperatures. Two main types of processes have been elucidated: reaction of aluminum ions with sulfate ones in the presence of calcium ions in aqueous solution to form ettringite supplemented by pozzolanic activity leading to the formation of calcium silicate and calcium aluminosilicate hydrates. Concomitant condensation of alumina and silica species and carbonation have influenced the course of hydration. Activation energy E a depends slightly on composition of ternary system.


Pozzonalic reactions Ettringite formation Kinetics and mechanism 



The authors are grateful for Grant APVV-15-0631 and for the support of the project Sustainability and Development REG LO1211 addressed to the Materials Research Center at FCH VUT.


  1. 1.
    Li C, Sun H, Li L. A review: the comparison between alkali-activated slag (Si+ Ca) and metakaolin (Si+ Al) cements. Cem Concr Res. 2010;40:1341–9.CrossRefGoogle Scholar
  2. 2.
    Sha W, Pereira GB. Differential scanning calorimetry study of ordinary Portland cement paste containing metakaolin and theoretical approach of metakaolin activity. Cem Concr Compos. 2001;25:455–61.CrossRefGoogle Scholar
  3. 3.
    Kuliffayová M, Krajči Ľ, Janotka I, Šmatko V. Thermal behaviour and characterization of cement composites with burnt kaolin sand. J Therm Anal Calorim. 2012;108:425–32.CrossRefGoogle Scholar
  4. 4.
    Krajčí Ľ, Janotka I, Jamnický P. Burnt kaolin sand as pozzolanic material for cement hydration. Ceram Silik. 2007;51:217–24.Google Scholar
  5. 5.
    Snelson DG, Wild S, O’Farrell M. Heat of hydration of Portland cement–metakaolin–fly ash (PC–MK–PFA) blends. Cem Concr Res. 2008;38:832–40.CrossRefGoogle Scholar
  6. 6.
    Ptáček P, Opravil T, Šoukal F, Wasserbauer J, Masilko J, Baracek J. The influence of structure order on the kinetics of dehydroxylation of kaolinite. J Eur Ceram Soc. 2013;33:2793–9. Scholar
  7. 7.
    Ptáček P, Kubatová D, Havlica J, Brandštetr J, Šoukal F, Opravil T. The non-isothermal kinetic analysis of the thermal decomposition of kaolinite by thermogravimetric analysis. Powder Technol. 2010;204:222–7.CrossRefGoogle Scholar
  8. 8.
    Li Z, Ding Z. Property improvement of Portland cement by incorporating with metakaolin and slag. Cem Concr Res. 2003;33:579–84.CrossRefGoogle Scholar
  9. 9.
    Kostuch JA, Walters GV, Jones TR. High performance concretes incorporating metakaolin—a review. In: Dhir RK, Jones MR, editors. Concrete 2000. London: E&FN Spon; 1993. p. 1799–811.Google Scholar
  10. 10.
    Nadeem A, Memon SA, Lo TY. Mechanical performance, durability, qualitative and quantitative analysis of microstructure of fly ash and metakaolin mortar at elevated temperatures. Constr Build Mater. 2013;38:338–47.CrossRefGoogle Scholar
  11. 11.
    Minárik L, Kopecskó K. Impact of metakaolin—a new supplementary material—on the hydration mechanism of cement, Acta Tech. Napocensis Civ Eng Arch. 2013;56(2):100–110.
  12. 12.
    Morsy MS, Al-Salloum Y, Almusallam T, Abbas H. Effect of nano-metakaolin addition on the hydration characteristics of fly ash blended cement mortar. J Therm Anal Calorim. 2014;116:845–52.CrossRefGoogle Scholar
  13. 13.
    Gallucci E, Mathur P, Scrivener KL. Microstructural development of early age hydration shells around cement grains. Cem Concr Res. 2010;40:4–13.CrossRefGoogle Scholar
  14. 14.
    Jansen D, Goety-Neunhoeffer F, Lothenbach B, Neubauer J. The early hydration of Ordinary Portland Cement (OPC): An approach comparing measured heat flow with calculated heat flow from QXRD. Cem Concr Res. 2012;42:134–8.CrossRefGoogle Scholar
  15. 15.
    Copeland LE, Kantro DL, Verbeck GJ. Chemistry of hydration of Portland cement. Proc Symp Cem Chemistry Cem Concr Assoc Wash. 1960;1:429–68.Google Scholar
  16. 16.
    El-Didamony H, Tm El-Sokkari, Kha Khalil, Mohamed H, Ahmed IA. Hydration mechanisms of calcium sulphoaluminate C4A3S̄, C4AS̄ phase and active belite β-C2S. Ceram Silik. 2012;56:389–95.Google Scholar
  17. 17.
    Juenger MCG, Winnefeld F, Provis JL, Ideker JH. Advances in alternative cementitious binders. Cem Concr Res. 2011;41:1232–43.CrossRefGoogle Scholar
  18. 18.
    Palou MT, Majling J. Effects of sulfate, calcium and aluminium ions upon the hydration of sulphoaluminate belite cement. J Therm Anal. 1996;46:549–56.CrossRefGoogle Scholar
  19. 19.
    Pelletier L, Winnefeld F, Lothenbach B. The ternary system Portland cement–calcium sulphoaluminate clinker–anhydrite: hydration mechanism and mortar properties. Cem Concr Comp. 2010;32:497–507.CrossRefGoogle Scholar
  20. 20.
    Winnefeld F, Lothenbach B. Hydration of calcium sulfoaluminate cements—experimental findings and thermodynamic modelling. Cem Concr Res. 2010;40:1239–47.CrossRefGoogle Scholar
  21. 21.
    Palou MT, Kuzielová E, Novotny RF, Žemlička M. Blended cements consisting of Portland cement–slag–silica fume–metakaolin system. J Therm Anal Calorim. 2016;125:998–1004.Google Scholar
  22. 22.
    Boháč M, Palou MT, Novotný R, Másilko J, Všianský D, Staněk T. Investigation on early hydration of Portland cement-blast-furnace slag-metakaolin ternary blends. Constr Build Mater. 2014;64:333–41.CrossRefGoogle Scholar
  23. 23.
    Boháč M, Palou M, Novotný R, Másilko JF, Opravil T. Influence of temperature on early hydration of Portland cement-metakaolin-slag system. J Therm Anal Calorim. 2017;127:309–18.CrossRefGoogle Scholar
  24. 24.
    Žemlička M, Kuzielová E, Kuliffayová M, Tkacz J, Palou MT. Study of hydration products in the model systems metakaolin–lime and metakaolin–lime–gypsum. Ceram Silik. 2015;59:283–91.Google Scholar
  25. 25.
    Frías M, Sánchez de Rojas MI, Cabrera J. The effect that the pozzolanic reaction of metakaolin has on the heat evolution in metakaolin-cement mortars. Cem Concr Res. 2000;30:209–16.CrossRefGoogle Scholar
  26. 26.
    Rahhal V, Cabrera O, Talero R, Delgado A. Calorimetry of Portland cement with silica fume and gypsum additions. J Therm Anal Calorim. 2007;87:331–6.CrossRefGoogle Scholar
  27. 27.
    Gruyaert E, Robeyst N, De Belie N. Study of the hydration of Portland cement blended with blast-furnace slag by calorimetry and thermogravimetry. J Therm Anal Calorim. 2010;102:941–51.CrossRefGoogle Scholar
  28. 28.
    Morsy MS. Effect of temperature on hydration kinetics and stability of hydration phases of metakaolin–lime sludge–silica fume system. Ceramics. 2005;49:225–9.Google Scholar
  29. 29.
    Siler P, Kratky J, De Belie N. Isothermal and solution calorimetry to assess the effect of superplasticizers and mineral admixtures on cement hydration. J Therm Anal Calorim. 2012;107:313–20.CrossRefGoogle Scholar
  30. 30.
    Pacewska B, Wilinska I, Bukowska M. Calorimetric investigations of the influence of waste aluminosilicate on the hydration of different cements. J Therm Anal Calorim. 2009;97:61–6.CrossRefGoogle Scholar
  31. 31.
    Zielenkiewicz W, Kaminski M. A conduction calorimeter for measuring the heat of cement hydration in the initial hydration period. J Therm Anal Calorim. 2001;65:335–40.CrossRefGoogle Scholar
  32. 32.
    Copeland LE, Kantro DL, Verbeck GJ. Chemistry of hydration of Portland cement. Proc Symp Cem Chem Cem Concr Assoc Wash. 1960;1:429–68.Google Scholar
  33. 33.
    Thomas JJ. The instantaneous apparent activation energy of cement hydration measured using a novel calorimetry-based method. J Am Ceram Soc. 2012;95–10:3291–6.CrossRefGoogle Scholar
  34. 34.
    Ježo Ľ, Ifka T, Cvopa B, Škundová J, Kovár V, Palou M. Effect of temperature upon the strength development rate and upon the hydravion kinetice of cements. Ceram Silik. 2010;54:269–76.Google Scholar
  35. 35.
    Feldman RF, Ramachandran VS, Sereda PJ. Influence of CaCO3 on the hydration of 3CaO. Al2O3. J Am Ceram Soc. 1965;48:25–30.CrossRefGoogle Scholar
  36. 36.
    Bensted J. Some hydration investigations involving Portland cement effect of calcium carbonate substitution of gypsum. World Cem Technol. 1980;11:395–406.Google Scholar
  37. 37.
    Weng L, Sagoe-Crentsil K. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: part I—Low Si/Al ratio systems. J Mater Sci. 2007;42:2997–3006.CrossRefGoogle Scholar
  38. 38.
    Weng L, Sagoe-Crentsil K, Brown T, Song S. Mater Sci Eng B Solid-State Mater Adv Technol. 2005;117(2):163.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Martin Palou
    • 1
    • 2
    • 3
  • Eva Kuzielová
    • 1
    • 2
  • Matúš Žemlička
    • 1
    • 2
  • Radoslav Novotný
    • 3
  • Jiří Másilko
    • 3
  1. 1.Institute of Construction and ArchitectureSlovak Academy of SciencesBratislava 45Slovak Republic
  2. 2.Faculty of Chemical and Food TechnologySlovak University of TechnologyBratislavaSlovak Republic
  3. 3.Faculty of ChemistryBrno University of TechnologyBrnoCzech Republic

Personalised recommendations