Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 1, pp 579–589 | Cite as

New possibilities of application of DSC as a new clinical diagnostic method

A review
  • Péter Farkas
  • Franciska Könczöl
  • Dénes Lőrinczy
Article
  • 51 Downloads

Abstract

Differential scanning calorimetry (DSC) is the most often used method in thermal analysis. Recently, there is growing clinical use for it. With this method, we can measure the effects of drugs and we can quantify and characterize changes in different organs or parts of body. This way it is possible to conclude short- and long-term effects in a predictive way. Our team were examined the effects of cyclophosphamide on guinea pigs equivalent to human protocol in experimental conditions. Besides of its beneficial effects, cyclophosphamides may have got severe life-threatening side effects and complications because of the actual plasma level and high cumulative dosage. In the first step of our experiment, we examined the effects of cyclophosphamide on guinea pigs’ nerve–muscle complex with oncological indication by using a dosage protocol based on body mass. As a second step with the same method and cyclophosphamide dosage, we examined its effect on the heart left ventricle. The third step was in the further clinical application experiment with unchanged parameters on blood plasma as well as blood cells too, exhibiting dosage-dependent changes on plasma and blood cells. Alterations in different materials caused by using different cyclophosphamide dosage and not uniform treatment length produced well correlated and clearly detected changes with DSC. Based on our results, we found detectable and partway quantified alterations with DSC on blood plasma components; therefore, it can be used in clinical routine because it is relatively simple and cheap. In long-term treatments, incidental severe results and side effects caused by cumulative dose may become also predictive with this method. All these show a new promising area in DSC usage which passed out of mind in the last 10 years.

Keywords

Cyclophosphamide Nerve Muscle Blood plasma and cell DSC 

Notes

Acknowledgements

This work was supported by Grant OTKA CO-272 (for D. Lőrinczy). The present scientific contribution is dedicated to the 650th anniversary of the foundation of the University of Pécs, Hungary.

References

  1. 1.
    Könczöl F, Lőrinczy D, Belágyi J. Effect of oxygen free radicals on myosin in muscle fibres. FEBS Lett. 1998;427:341–4.CrossRefGoogle Scholar
  2. 2.
    Lőrinczy D, Gaszner B, Könczöl F, Belagyi J. Effect of oxygen free radicals on myosin in muscle fibres. DSC and EPR study. J Therm Anal Calorim. 2000;61:597–605.CrossRefGoogle Scholar
  3. 3.
    Lőrinczy D, Könczöl F, Farkas L, Gaszner B, Belagyi J. UV generated oxygen free radicals in cardiac myosin. DSC and EPR study. Thermochim Acta. 2000;343:35–41.CrossRefGoogle Scholar
  4. 4.
    Kiss M, Könczöl F, Farkas N, Lőrinczy D, Belágyi J. Cerium-mediated free radicals in skeletal muscle proteins. An EPR and DSC study. J Therm Anal Calorim. 2001;65:627–37.CrossRefGoogle Scholar
  5. 5.
    Farkas N, Belagyi J, Lőrinczy D. Calorimetric and spectroscopic properties of small proteins (bovine serum albumin, hemoglobin) after free radical generation. Thermochim Acta. 2003;404:141–8.CrossRefGoogle Scholar
  6. 6.
    Visegrády B, Lőrinczy D, Hild G, Somogyi B, Nyitrai M. The effect of phalloidin and jaspaklinolide on the flexibility and thermal stability of actin filaments. FEBS Lett. 2004;565:163–6.CrossRefGoogle Scholar
  7. 7.
    Visegrády B, Lőrinczy D, Hild G, Somogyi B, Nyitrai M. A simple model for the cooperative stabilisation of actin filaments by phalloidin and jasplakinolide. FEBS Lett. 2005;579:6–10.CrossRefGoogle Scholar
  8. 8.
    Vig A, Dudás R, Kupi T, Orbán J, Hild G, Lőrinczy D, Nyitrai M. The effect of phalloidin on filaments polymerized from heart muscle ADP-actin monomers. J Therm Anal Calorim. 2009;95:721–6.CrossRefGoogle Scholar
  9. 9.
    Gazsó I, Kránicz J, Bellyei Á, Lőrinczy D. DSC analysis of the abnormalities of human leg skeletal muscles. A preliminary study. Thermochim Acta. 2003;402:117–22.CrossRefGoogle Scholar
  10. 10.
    Domán I, Illés T, Lőrinczy D. Differential scanning calorimetric examination of the human intervertebral disc: establishment of calorimetric standards of different stages of degeneration. Thermochim Acta. 2003;405:293–9.CrossRefGoogle Scholar
  11. 11.
    Zapf I, Fekecs T, Ferencz A, Tizedes G, Pavlovics G, Kálmán E, Lőrinczy D. DSC analysis of human plasma in breast cancer patients. Thermochim Acta. 2011;524:88–91.CrossRefGoogle Scholar
  12. 12.
    Fekecs T, Zapf I, Ferencz A, Lőrinczy D. DSC analysis of human plasma in melanoma patients with or without regional lymph node metastases. J Therm Anal Calorim. 2012;108:149–52.CrossRefGoogle Scholar
  13. 13.
    Mehdi M, Fekecs T, Zapf I, Ferencz A, Lőrinczy D. Differential scanning calorimetry (DSC) analysis of human plasma in different psoriasis stages. J Therm Anal Calorim. 2013;111:1801–4.CrossRefGoogle Scholar
  14. 14.
    Szalai Z, Molnár TF, Lőrinczy D. Differential scanning calorimetry (DSC) of blood serum in chronic obstructive pulmonary disease (COPD): a new diagnostic tool ahead? J Therm Anal Calorim. 2013;113:259–64.  https://doi.org/10.1007/s10973-013-2999-1.CrossRefGoogle Scholar
  15. 15.
    Mehdi M, Ferencz A, Lőrinczy D. Evaluation of blood plasma changes by differential scanning calorimetry in psoriatic patients treated with drugs. J Therm Anal Calorim. 2014;116:557–62.  https://doi.org/10.1007/s10973-013-3585-2.CrossRefGoogle Scholar
  16. 16.
    Sillinger T, Lőrinczy D, Kocsis B, Kereskay L, Nöt LG, Wiegand N. Differential scanning calorimetric measurement of cartilage destruction caused by Gram-negative septic arthritis. J Therm Anal Calorim. 2014;116:747–52.  https://doi.org/10.1007/s10973-013-3351-5.CrossRefGoogle Scholar
  17. 17.
    Zapf I, Moezzi M, Fekecs T, Nedvig K, Lőrinczy D, Ferencz A. Influence of oxidative injury and monitoring of blood plasma by DSC on breast cancer patients. J Therm Anal Calorim. 2016;123:2029–35.  https://doi.org/10.1007/s10973-015-4642-9.CrossRefGoogle Scholar
  18. 18.
    Moezzi M, Zapf I, Fekecs T, Nedvig K, Lőrinczy D, Ferencz A. Influence of oxidative injury and monitoring of blood plasma by DSC on patients with psoriasis. J Therm Anal Calorim. 2016;123:2037–43.  https://doi.org/10.1007/s10973-015-4674-1.CrossRefGoogle Scholar
  19. 19.
    Szalai Z, Molnár FT, Lőrinczy D. Role of differential scanning calorimetry (DSC) in the staging of COPD. A new approach to an old definition problem. J Therm Anal Calorim. 2017;127:1231–8.  https://doi.org/10.1007/s10973-016-5495-620.CrossRefGoogle Scholar
  20. 20.
    Benkő L, Danis J, Hubmann R, Kasza G, Gömöri É, Rőth E, Lőrinczy D. DSC examination of the esophagus after implication of special stents, designed for the management of acute esophagus variceal bleeding. An experimental study. J Therm Anal Calorim. 2009;95(763–8):21.Google Scholar
  21. 21.
    Benkő L, Danis J, Rőth E, Lőrinczy D. Examination of the esophagus after implantation of stents especially designed for the management of acute esophagus variceal bleeding. In: Lőrinczy D, editor. Thermal analysis in medical application. Budapest: Akadémiai Kiadó; 2011. p. 201–18.Google Scholar
  22. 22.
  23. 23.
    Shanholtz C. Acute life-threatening toxicity of cancer treatment. Crit Care Clin. 2001;17:483–502.CrossRefGoogle Scholar
  24. 24.
    Brockstein BE, Smiley C, Al-Sadir J, Williams SF. Cardiac and pulmonary toxicity in patients undergoing high-dose chemotherapy for lymphoma and breast cancer: prognostic factors. Bone Marrow Transplant. 2000;25:885–94.CrossRefGoogle Scholar
  25. 25.
    Könczöl F, Wiegand N, Nöt LG, Lőrinczy D. Examination of the cyclophosphamide induced polyneuropathy on Guinea pig sciatic nerve and gastrocnemius muscle with differential scanning calorimetry. J Therm Anal Calorim. 2014;115:2239–43.  https://doi.org/10.1007/s10973-013-3179-z.CrossRefGoogle Scholar
  26. 26.
    Farkas P, Könczöl F, Lőrinczy D. Examination of the peripheral nerve and muscle damage in cyclophosphamide monotherapy with DSC in animal models. J Therm Anal Calorim. 2016;126:47–53.CrossRefGoogle Scholar
  27. 27.
    Farkas P, Könczöl F, Lőrinczy D. Examination of the left ventricle damage in cyclophosphamide monotherapy with DSC in animal models. J Therm Anal Calorim. 2017;127:1181–5.  https://doi.org/10.1007/s10973-016-5294-0.CrossRefGoogle Scholar
  28. 28.
    Santos GW, Sensenbrenner LL, Burke PJ, Mullins GM, Blas WB, Tutschka PJ, Slavin RE. The use of cyclophosphamide for clinical marrow transplantation. Transplant Proc. 1972;4:559–64.Google Scholar
  29. 29.
    Mills BA, Roberts RW. Cyclophosphamide-induced cardiomyopathy: a report of two cases and review of the English literature. Cancer. 1979;43(6):2223–6.CrossRefGoogle Scholar
  30. 30.
    Taniguchi I. Clinical significance of cyclophosphamide-induced cardiotoxicity. Intern Med. 2005;44(2):89–90.CrossRefGoogle Scholar
  31. 31.
    Asiri YA. Probucol attenuates cyclophosphamide-induced oxidative apoptosis, p53 and Bax signal expression in rat cardiac tissues. Oxidative Med Cell Longev. 2010;3(5):308–16.CrossRefGoogle Scholar
  32. 32.
    Dhesi S, Chu MP, Blevins G, Paterson I, Larratt L, Oudit GY, Kim DH. Cyclophosphamide-induced cardiomyopathy: a case report, review, and recommendations for management. J Investig Med High Impact Case Rep. 2013;1:1–7.Google Scholar
  33. 33.
    Eitel I, Kubusch K, Strohm O, Desch S, Mikami Y, de Waha S, Gutberlet M, Schuler G, Friedrich MG, Thiele H. Prognostic value and determinants of a hypo intense infarct core in T2-weighted cardiac magnetic resonance in acute reperfused ST-elevation-myocardial infarction. Circ Cardiovasc Imaging. 2011;4:354–62.CrossRefGoogle Scholar
  34. 34.
    Farkas P, Könczöl F, Lőrinczy D. Examination of the blood plasma and red blood cells in cyclophosphamide monotherapy with DSC in animal models. J Therm Anal Calorim. 2017;127:1239–43.  https://doi.org/10.1007/s10973-016-5442-6.CrossRefGoogle Scholar
  35. 35.
    Garbett NC, Mekmaysy C, Helm CV, Jenson AB, Chaires JB. Differential scanning calorimetry of blood plasma for clinical diagnosis and monitoring. Exp Mol Pathol. 2009;86:186–91.CrossRefGoogle Scholar
  36. 36.
    Michnik A, Drzazga Z. Thermal denaturation of mixtures of human serum proteins. DSC study. J Therm Anal Calorim. 2010;101:513–8.CrossRefGoogle Scholar
  37. 37.
    Todinova S, Krumova S, Gartcheva L, Robeerst C, Taneva SG. Microcalorimetry of blood serum proteome: a modified interaction network in the multiple myeloma case. Anal Chem. 2011;83:7992–8.CrossRefGoogle Scholar
  38. 38.
    Michnik A. Blood plasma, serum and serum proteins microcalorimetric studies aimed at diagnosis support. In: Lőrinczy D, editor. Thermal analysis in medical application. Budapest: Akadémiai Kiadó; 2011. p. 171–90.Google Scholar
  39. 39.
    Ferencz A, Fekecs T, Lőrinczy D. Differential scanning calorimetry as a new method to monitor human plasma in melanoma patients with regional limph node or distal metastases. In: Yaguang X, editor. Skin Cancer Book. Rijeka: InTech; 2011. p. 141–53.Google Scholar
  40. 40.
    Todinova S, Krumova S, Kurtev P, Dimitrov V, Djongov L, Dudunkov Z, Taneva SG. Calorimetry-based profiling of blood plasma from colorectal cancer patients. Biochim Biophys Acta. 2012;1820:1879–85.CrossRefGoogle Scholar
  41. 41.
    Chagovetz AA, Quinn C, Damarse N, Hansen LD, Chagovetz AM, Jensen RL. Differential scanning calorimetry of gliomas: a new tool in brain cancer diagnostics? Neurosurgery. 2013;73:289–95.CrossRefGoogle Scholar
  42. 42.
    Kikalishvili L, Ramishvili M, Nemsadze G, Lezhava T, Khorava P, Gorgoshidze M, Kiladze M. Thermal stability of blood plasma proteins of breast cancer patients. DSC study. J Therm Anal Calorim. 2015;120:501–5.CrossRefGoogle Scholar
  43. 43.
    Garbett NC, Mekmaysy CS, DeLeeuw L, Chaires JB. Clinical application of plasma thermograms. Utility, practical approaches and considerations. Methods. 2015;76:41–50.CrossRefGoogle Scholar
  44. 44.
    Vega S, Garcia-Gonzalez MA, Lanas A, Velazquez-Campoy A, Abian A. Deconvolution analysis for classifying gastric adenocarcinoma patients based on differential scanning calorimetry serum thermograms. Sci Rep. 2015;5:7988.  https://doi.org/10.1038/srep07988.CrossRefGoogle Scholar
  45. 45.
    Lőrinczy D, Belágyi J. Nucleotide binding induces global and local structural changes of myosin head in muscle fibres. Eur J Biochem. 2001;268:5970–6.CrossRefGoogle Scholar
  46. 46.
    Lőrinczy D, Hartvig N, Belagyi J. Analysis of nucleotide myosin complexes in skeletal muscle fibres by DSC and EPR. J Biochem Biophys Method. 2002;53:75–87.CrossRefGoogle Scholar
  47. 47.
    Lőrinczy D, Kiss M, Belagyi J. DSC and EPR study on AMP.PNP, BeFx and AlF4 containing nucleotide complexes. J Therm Anal Calorim. 2003;72:573–80.CrossRefGoogle Scholar
  48. 48.
    Lőrinczy D. Effect of nucleotides and environmental factors on the intermediate states of ATP hydrolysis cycle in skeletal muscle fibres. In: Lőrinczy D, editor. The nature of biological systems as revealed by thermal methods. Dordrecht: Springer; 2004. p. 159–86.Google Scholar
  49. 49.
    Lőrinczy D, Belagyi J. Intermediate states of myosin head during ATP hydrolysis cycle in psoas muscle fibres by EPR and DSC: a review. J Therm Anal Calorim. 2007;90:611–21.CrossRefGoogle Scholar
  50. 50.
    Dergez T, Lőrinczy D, Könczöl F, Farkas N, Belagyi J. Differential scanning calorimetry study of glycerinated rabbit psoas muscle fibres in intermediate state of ATP hydrolysis. BMC Struct Biol. 2007;7:41–50.CrossRefGoogle Scholar
  51. 51.
    Wiegand N, Vámhidy L, Patczai B, Dömse E, Kereskai L, Lőrinczy D. Differential scanning calorimetric examination of the human skeletal muscle in a compartment syndrome of the lower extremities. J Therm Anal Calorim. 2009;98:177–82.CrossRefGoogle Scholar
  52. 52.
    Könczöl F, Lőrinczy D, Zs Vértes, Gy Hegyi, Belagyi J. Intermonomer cross-linking affects the thermal transitions in F-actin. J Therm Anal Calorim. 2010;101:549–53.CrossRefGoogle Scholar
  53. 53.
    Türmer K, Könczöl F, Lőrinczy D, Belágyi J. AMP.PNP affects the dynamical properties of monomer and polymerized actin. A DSC and an EPR study. J Therm Anal Calorim. 2012;108:95–100.CrossRefGoogle Scholar
  54. 54.
    Könczöl F, Belagyi J, Lőrinczy D. Thermal and dynamic behaviour of the actin monomer in case of different cations. J Therm Anal Calorim. 2013;111:1717–23.CrossRefGoogle Scholar
  55. 55.
    Lőrinczy D. The “Green Issue” of JTAC as a great idea of Judit Simon. J Therm Anal Calorim. 2015;120:13–22.CrossRefGoogle Scholar
  56. 56.
    Lőrinczy D. Thermal analysis in biological and medical applications. J Therm Anal Calorim. 2017;.  https://doi.org/10.1007/s10973-017-6308-2.Google Scholar
  57. 57.
    Lőrinczy D, Belagyi J. Scanning calorimetric and EPR studies on the thermal stability of actin. Thermochim Acta. 1995;259:153–64.CrossRefGoogle Scholar
  58. 58.
    Lőrinczy D, Könczöl F, Gaszner B, Belagyi J. Structural stability of actin as studied by DSC and EPR. Thermochim Acta. 1998;322:95–100.CrossRefGoogle Scholar
  59. 59.
    Hild G, Nyitrai M, Belagyi J, Somogyi B. The influence of divalent cations on the dynamic properties of actin filaments: a spectroscopic study. Biophys J. 1998;75:3015–22.CrossRefGoogle Scholar
  60. 60.
    Nyitrai M, Hild G, Belagyi J, Somogyi B. Spectroscopic study of conformational changes in subdomain 1 of G-actin: influence of divalent cations. Biophys J. 1997;73:2023–32.CrossRefGoogle Scholar
  61. 61.
    Nyitrai M, Hild G, Belagyi J, Somogyi B. The flexibility of actin filaments as revealed by fluorescence resonance energy transfer. The influence of divalent cations. J Biol Chem. 1999;274:12996–3001.CrossRefGoogle Scholar
  62. 62.
    Nyitrai M, Hild G, Lakos Z, Somogyi B. Effect of Ca2+–Mg2+ exchange on the flexibility and/or conformation of the small domain in monomeric actin. Biophys J. 1998;74:2474–81.CrossRefGoogle Scholar
  63. 63.
    Fonyó A, editor. The book of medical physiology (Az orvosi élettan tankönyve). Medicina Könyvkiadó: Budapest; 1999.Google Scholar
  64. 64.
    Monti M, Wadsö I. Microcalorimetric measurements of heat production in human erythrocytes I. Normal subjects and anemic patients. Scand J Clin Lab Investig. 1973;32(1):47–54.CrossRefGoogle Scholar
  65. 65.
    Monti M, Wadsö I. Microcalorimetric measurements of heat production in human erythrocytes: II. Hyperthyroid patients before, during and after treatment. Acta Med Scand. 1976;200(1–6):301–8.Google Scholar
  66. 66.
    Monti M, Wadsö I. Microcalorimetric measurements of heat production in human erythrocytes heat effect during methylene blue stimulation. Scand J Clin Lab Investig. 1976;36(6):431–6.CrossRefGoogle Scholar
  67. 67.
    Monti M, Wadsö I. Microcalorimetric measurements of heat production in human erythrocytes: III. Influence of Ph, temperature, glucose concentration, and storage conditions. Scand J Clin Lab Investig. 1976;36(6):565–72.CrossRefGoogle Scholar
  68. 68.
    Monti M, Wadsö I. Microcalorimetric measurements of heat production in human erythrocytes: IV. Comparison between different calorimetric techniques, suspension media, and preparation methods. Scand J Clin Lab Investig. 1976;36(6):573–80.CrossRefGoogle Scholar
  69. 69.
    Hernández-Hernández A, Rodríguez MC, López-Revuelta A, Sánchez-Gallego JI, Shnyrov V, Llanillo M, Sánchez-Yagüe J. Alterations in erythrocyte membrane protein composition in advanced non-small cell lung cancer. Blood Cells Mol Dis. 2006;36(3):355–63.CrossRefGoogle Scholar
  70. 70.
    McDonald GB, Slattery JT, Bouvier ME, Ren S, Batchelder AL, Kalhorn TF, Schoch HG, Anasetti C, Gooley T. Cyclophosphamide metabolism, liver toxicity, and mortality following hematopoietic stem cell transplantation. Blood. 2003;101:2043–8.CrossRefGoogle Scholar
  71. 71.
    Joy MS, La M, Wang J, Bridges AS, Hu Y, Hogan SL, Frye RF, Blaisdell J, Goldstein JA, Dooley MA, Brouwer KLR, Falk RJ. Cyclophosphamide and 4-hydroxycyclophosphamide pharmacokinetics in patients with glomerulonephritis secondary to lupus and small vessel vasculitis. Br J Clin Pharmacol. 2012;74:445–55.CrossRefGoogle Scholar
  72. 72.
    Monaselidze J, Kalandadze Y, Topuridze I, Gadabadze M. Thermodynamic properties of serum and plasma of patients sick with cancer. High Temp High Press. 1997;29(6):677–81.CrossRefGoogle Scholar
  73. 73.
    Khachidze DG, Monaselidze DR. Microcalorimetric study of human serum (Mikrokalo-rimetricheskoe issledovanie syvorotki krovi cheloveka.). Biofizika. 2000;45:320–4.Google Scholar
  74. 74.
    Michnik A, Michalik K, Kluczewska A, Drzazga Z. Comparative DSC study of human and bovine serum albumin. J Therm Anal Calorim. 2006;84:113–7.CrossRefGoogle Scholar
  75. 75.
    Krumova S, Rukova B, Todinova S, Gartcheva L, Milanova V, Toncheva D, Taneva SG. Calorimetric monitoring of the serum proteome in schizophrenia patients. Thermochim Acta. 2013;572:59–64.CrossRefGoogle Scholar
  76. 76.
    Nemsadze G, Lezhava T, Gorgoshidze M, Kiladze M, Gogelia N, Khachidze DG, Lomidze E, Monaselidze J. Blood plasma main proteins stability of patients with ductal carcinoma in post-surgery period. Int J Clin Exp Med. 2016;9(2):1338–45.Google Scholar
  77. 77.
    Tenchov B, Abarova S, Koynova R, Traikov L, Tancheva L. Low-temperature exothermic transitions in brain proteome of mice, effect of scopolamine. Thermochim Acta. 2017;650:26–32.CrossRefGoogle Scholar
  78. 78.
    Tenchov B, Abarova S, Koynova R, Traikov L, Dragomanova S, Tancheva L. A new approach for investigating neurodegenerative disorders in mice based on DSC. J Therm Anal Calorim. 2017;127:483–6.CrossRefGoogle Scholar
  79. 79.
    Garbett NC, Brock GN. Differential scanning calorimetry as a complementary diagnostic tool for the evaluation of biological samples. BBA Gen Subj. 2016;1860:981–9.CrossRefGoogle Scholar
  80. 80.
    Kardos R, Nevalainen E, Nyitrai M. Hild G (2013) The effect of ADF/cofilin and profilin on the dynamics of monomeric actin. Biochim Biophys Acta. 1834;10:2010–9.Google Scholar
  81. 81.
    Czimbalek L, Kollár V, Kardos R, Lőrinczy D, Nyitrai M, Hild G. The effect of toxofilin on the structure and dynamics of monomeric actin. FEBS Lett. 2015;589(20 Pt B):3085–9.CrossRefGoogle Scholar
  82. 82.
    Takács-Kollár V, Nyitrai M. Hild G (2016) The effect of mouse twinfilin-1 on the structure and dynamics of monomeric actin. Biochim Biophys Acta. 1864;7:840–6.Google Scholar
  83. 83.
    Takács-Kollár V, Nyitrai M, Lőrinczy D, Hild G. Resolving the similarities and differences between the effect of structurally different actin-binding proteins on the thermodynamic properties of G-actin. J Therm Anal Calorim. 2017;127:1261–6.CrossRefGoogle Scholar
  84. 84.
    Orbán J, Lőrinczy D, Nyitrai M, Hild G. Nucleotide dependent differences between the alpha-skeletal and alpha-cardiac actin isoforms. Biochem Biophys Res Commun. 2008;368(3):696–702.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Péter Farkas
    • 1
  • Franciska Könczöl
    • 2
  • Dénes Lőrinczy
    • 3
  1. 1.Clinics of Radiology Clinical CenterUniversity PécsPécsHungary
  2. 2.Institute of Forensic Medicine, University PécsPécsHungary
  3. 3.Institute of Biophysics School of Medicine, University PécsPécsHungary

Personalised recommendations