Skip to main content
Log in

Study on thermal stabilities and symmetries of chemisorbed species formed on K-zeolites upon CO2 adsorption by TPD and in situ IR spectroscopy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the current study, K-zeolites with different structure, Si/Al ratio and morphology have been prepared and then characterized by different techniques including in situ IR spectroscopy upon CO2 sorption and CO2–TPD with the aim of understanding the nature of basic sites present on their surface acting as catalytic sites in aldol condensation reaction. Results showed that depending on the zeolite structure, pore size and Si/Al ratio, two categories of basic sites could be present in potassium modified zeolites. Symmetries of chemisorbed CO2 on these sites are different and comparing the results of TPD and in situ IR spectroscopy; it can be concluded that highly symmetric species (e.g., monodentate carbonates) have higher thermal stability than low symmetric adsorbed species (e.g., bidentate carbonates). It was found that in the zeolite with relatively smaller pore size or less accessible pores (e.g., MFI), second type of adsorbed species is more popular, while highly symmetric species tend to form on large pore zeolites and on materials with some mesoporosity (e.g., BEA or dealuminated FAU zeolites). It is observed that almost all the bidentate species are desorbed at 80 °C, while monodentate species are thermally stable at least up to 130 °C. Based on combination of experimental data obtained from TPD with IR spectroscopy results, origin and assignment of the TPD peaks were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lavalley J. Infrared spectrometric studies of the surface basicity of metal oxides and zeolites using adsorbed probe molecules. Catal Today. 1996;27(3):377–401.

    Article  CAS  Google Scholar 

  2. Barthomeuf D, Coudurier G, Vedrine J. Basicity and basic catalytic properties of zeolites. Mater Chem Phys. 1988;18(5–6):553–75.

    Article  CAS  Google Scholar 

  3. Barthomeuf D. Framework induced basicity in zeolites. Microporous Mesoporous Mater. 2003;66(1):1–14.

    Article  CAS  Google Scholar 

  4. Barthomeuf D. Basic zeolites: characterization and uses in adsorption and catalysis. Catal Rev. 1996;38(4):521–612.

    Article  Google Scholar 

  5. Heidler R, Janssens G, Mortier W, Schoonheydt R. Charge sensitivity analysis of intrinsic basicity of Faujasite-type zeolites using the electronegativity equalization method (EEM). J Phys Chem. 1996;100(50):19728–34.

    Article  CAS  Google Scholar 

  6. Walton KS, Abney MB, Douglas LM. CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Microporous Mesoporous Mater. 2006;91(1):78–84.

    Article  CAS  Google Scholar 

  7. Kikhtyanin O, Bulánek R, Frolich K, Čejka J, Kubička D. Aldol condensation of furfural with acetone over ion-exchanged and impregnated potassium BEA zeolites. J Mol Catal A Chem. 2016;424:358–68.

    Article  CAS  Google Scholar 

  8. Di Serio M, Ledda M, Cozzolino M, Minutillo G, Tesser R, Santacesaria E. Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts. Ind Eng Chem Res. 2006;45(9):3009–14.

    Article  CAS  Google Scholar 

  9. Fridell E, Skoglundh M, Westerberg B, Johansson S, Smedler G. NO x storage in barium-containing catalysts. J Catal. 1999;183(2):196–209.

    Article  CAS  Google Scholar 

  10. Reddy AS, Gopinath CS, Chilukuri S. Selective ortho-methylation of phenol with methanol over copper manganese mixed-oxide spinel catalysts. J Catal. 2006;243(2):278–91.

    Article  CAS  Google Scholar 

  11. Sádaba I, Ojeda M, Mariscal R, Richards R, Granados ML. Mg–Zr mixed oxides for aqueous aldol condensation of furfural with acetone: effect of preparation method and activation temperature. Catal Today. 2011;167(1):77–83.

    Article  CAS  Google Scholar 

  12. Kikhtyanin O, Chlubná P, Jindrová T, Kubička D. Peculiar behavior of MWW materials in aldol condensation of furfural and acetone. Dalton Trans. 2014;43(27):10628–41.

    Article  CAS  PubMed  Google Scholar 

  13. Kikhtyanin O, Kelbichová V, Vitvarová D, Kubů M, Kubička D. Aldol condensation of furfural and acetone on zeolites. Catal Today. 2014;227:154–62.

    Article  CAS  Google Scholar 

  14. Hora L, Kikhtyanin O, Čapek L, Bortnovskiy O, Kubička D. Comparative study of physico-chemical properties of laboratory and industrially prepared layered double hydroxides and their behavior in aldol condensation of furfural and acetone. Catal Today. 2015;241:221–30.

    Article  CAS  Google Scholar 

  15. Kikhtyanin O, Kubička D, Čejka J. Toward understanding of the role of Lewis acidity in aldol condensation of acetone and furfural using MOF and zeolite catalysts. Catal Today. 2015;243:158–62.

    Article  CAS  Google Scholar 

  16. Thanh DN, Kikhtyanin O, Ramos R, Kothari M, Ulbrich P, Munshi T, Kubička D. Nanosized TiO2—a promising catalyst for the aldol condensation of furfural with acetone in biomass upgrading. Catal Today. 2016;277:97–107.

    Article  CAS  Google Scholar 

  17. Smoláková L, Frolich K, Kocík J, Kikhtyanin O, Čapek L. Surface properties of hydrotalcite-based Zn (Mg) Al oxides and their catalytic activity in aldol condensation of furfural with acetone. Ind Eng Chem Res. 2017;56(16):4638–48.

    Article  CAS  Google Scholar 

  18. Nielsen AT, Houlihan WJ. The aldol condensation. Organic reactions. New Jersey: Wiley; 1968.

    Google Scholar 

  19. Kikhtyanin O, Ganjkhanlou Y, Kubička D, Bulánek R, Čejka J. Characterization of potassium-modified FAU zeolites and their performance in aldol condensation of furfural and acetone. Appl Catal A. 2018;549:8–18. https://doi.org/10.1016/j.apcata.2017.09.017.

    Article  CAS  Google Scholar 

  20. Bordiga S, Lamberti C, Bonino F, Travert A, Thibault-Starzyk F. Probing zeolites by vibrational spectroscopies. Chem Soc Rev. 2015;44(20):7262–341. https://doi.org/10.1039/C5CS00396B.

    Article  CAS  PubMed  Google Scholar 

  21. Solinas V, Ferino I. Microcalorimetric characterisation of acid–basic catalysts. Catal Today. 1998;41(1):179–89.

    Article  CAS  Google Scholar 

  22. Yagi F, Tsuji H, Hattori H. IR and TPD (temperature-programmed desorption) studies of carbon dioxide on basic site active for 1-butene isomerization on alkali-added zeolite X. Microporous Mater. 1997;9(5):237–45.

    Article  CAS  Google Scholar 

  23. León M, Díaz E, Bennici S, Vega A, Ordónez S, Auroux A. Adsorption of CO2 on hydrotalcite-derived mixed oxides: sorption mechanisms and consequences for adsorption irreversibility. Ind Eng Chem Res. 2010;49(8):3663–71.

    Article  CAS  Google Scholar 

  24. Wilmshurst J, Senderoff S. Vibrational spectra of inorganic molecules. II. Infrared reflection spectra of liquid lithium, sodium, potassium, and silver nitrates. J Chem Phys. 1961;35(3):1078–84.

    Article  CAS  Google Scholar 

  25. Zhu JH, Wang Y, Chun Y, Wang XS. Dispersion of potassium nitrate and the resulting basicity on alumina and zeolite NaY. J Chem Soc Faraday Trans. 1998;94(8):1163–9.

    Article  CAS  Google Scholar 

  26. Ding W, Meitzner GD, Iglesia E. The effects of silanation of external acid sites on the structure and catalytic behavior of Mo/H–ZSM5. J Catal. 2002;206(1):14–22.

    Article  CAS  Google Scholar 

  27. Karge HG, Beyer HK. Solid-state ion exchange in microporous and mesoporous materials. Post-Synthesis Modification I. Berlin: Springer; 2002. p. 43–201.

  28. Karge HG. Solid-state ion exchange in zeolites. In: Handbook of Heterogeneous Catalysis. Weinheim: Wiley-VCH; 2008.  pp. 484–510.

  29. Liu Q, Mace A, Bacsik Z, Sun J, Laaksonen A, Hedin N. NaKA sorbents with high CO2-over-N2 selectivity and high capacity to adsorb CO2. Chem Commun. 2010;46(25):4502–4.

    Article  CAS  Google Scholar 

  30. Bulánek R, Frolich K, Frýdová E, Čičmanec P. Microcalorimetric and FTIR study of the adsorption of carbon dioxide on alkali-metal exchanged FER zeolites. Top Catal. 2010;53(19):1349–60. https://doi.org/10.1007/s11244-010-9593-6.

    Article  CAS  Google Scholar 

  31. Gatehouse B, Livingstone S, Nyholm R. The infrared spectra of some simple and complex carbonates. J Chem Soc (Resumed). 1958;636:3137–42.

    Article  Google Scholar 

  32. Bulánek R, Frolich K, Frýdová E, Čičmanec P. Study of adsorption sites heterogeneity in zeolites by means of coupled microcalorimetry with volumetry. J Therm Anal Calorim. 2011;105(2):443–9. https://doi.org/10.1007/s10973-010-1108-y.

    Article  CAS  Google Scholar 

  33. Solymosi F, Knozinger H. Infrared spectroscopic study of the adsorption and reactions of CO2 on K-modified Rh/SiO2. J Catal. 1990;122(1):166–77.

    Article  CAS  Google Scholar 

  34. Smoláková L, Frolich K, Troppová I, Kutálek P, Kroft E, Čapek L. Determination of basic sites in Mg–Al mixed oxides by combination of TPD-CO2 and CO2 adsorption calorimetry. J Therm Anal Calorim. 2017;127(3):1921–9. https://doi.org/10.1007/s10973-016-5851-6.

    Article  CAS  Google Scholar 

  35. Guder V, Dalgic SS. Thermodynamic properties of potassium oxide (K2O) Nanoparticles by molecular dynamics simulations. Acta Physica Polonica A. 2017;131(3):490–494.

    Article  CAS  Google Scholar 

  36. Baerlocher C. Database of zeolite structures. http://www.iza-structure.org/databases/. 2012.

  37. Busca G, Lorenzelli V. Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. Mater. Chem. 1982;7(1):89–126.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Czech Science Foundation for the project of the Centre of Excellence (P106/12/G015) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadolah Ganjkhanlou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganjkhanlou, Y., Bulánek, R., Kikhtyanin, O. et al. Study on thermal stabilities and symmetries of chemisorbed species formed on K-zeolites upon CO2 adsorption by TPD and in situ IR spectroscopy. J Therm Anal Calorim 133, 355–364 (2018). https://doi.org/10.1007/s10973-017-6811-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6811-5

Keywords

Navigation