Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 1, pp 421–428 | Cite as

Brown pigments based on perovskite structure of BiFeO3−δ

  • Žaneta Dohnalová
  • Petra Šulcová
  • Petr Bělina
  • Milan Vlček
  • Nataliia Gorodylova


Light brown inorganic pigments based on BiFeO3 doped by Sr2+ cations were prepared by a conventional solid-state reaction at high temperature. This study is focused on the synthesis of Bi1−x Sr x FeO3−δ powders in a range of substitution (x = 0–0.35; with step size 0.05). The main role of strontium is to overcome the defects that come to exist during the evaporation of Bi over material preparation. The substitution of trivalent bismuth ions by divalent strontium ions results in oxygen deficiency in the lattice, which was proved by both thermogravimetric analysis and elemental analysis. The substitution has a positive effect on the thermal stability of samples. The thermal stability of BiFeO3 is 1046 K, whereas the substitution of 20 mol% of Bi3+ by Sr2+ ions shifted it to 1403 K and powder with composition Bi0.65Sr0.35FeO3−δ has a thermal stability that is higher than 1434 K. An increasing range of substitution is connected with the change in the pigment color from reddish-brown to orange-brown and back to reddish-brown. The Bi0.85Sr0.15FeO3−δ pigment prepared by calcination at 1273 K offers the most interesting color properties (L* = 45.57; a* = 20.38; b* = 26.23).


Reddish-brown pigment Ferrite Perovskite Strontium iron bismuth oxide 



This work has been supported by Grant Agency of Czech Republic, Project No. 16-06697S.


  1. 1.
    Marinova Y, Hohemberger JM, Cordoncillo E, Escribano P, Carda JB. Study of solid solutions with perovskite structure for application in the field of the ceramic pigments. J Eur Ceram Soc. 2003;23:213–20.CrossRefGoogle Scholar
  2. 2.
    CPMA. Classification and chemical description of the complex inorganic colored pigments. 4th ed. Alexandria: Color Pigments Manufacturers Association, Inc; 2013.Google Scholar
  3. 3.
    Matskevich NI, Wolf T, Pischur D, Kozlova SG. The heat capacity and thermodynamic functions of Bi12.5Lu1.5ReO24.5 in the temperature range of 175–550 K. J Therm Anal Calorim. 2016;124:1745–8.CrossRefGoogle Scholar
  4. 4.
    Ivanov MG, Shmakov AN, Drebushchak VA, Podyacheva OY. Two mechanisms of thermal expansion in perovskite SrCo0.6Fe0.2Nb0.2O3−z. J Therm Anal Calorim. 2010;100:79–82.CrossRefGoogle Scholar
  5. 5.
    Matskevich NI, Wolf T, Le Tacon M, et al. Heat capacity on data of DSC calorimetry and thermodynamic functions of barium cerate doped by holmium and indium oxides in the temperature range of 200–700 K. J Therm Anal Calorim. 2017;. Scholar
  6. 6.
    Šulcová P, Trojan M. Study of Ce1−xPrxO2 pigments. Thermochim Acta. 2003;395:251–5.CrossRefGoogle Scholar
  7. 7.
    Bondioli F, Ferrari AM, Lusvarghi L, Manfredini T, Nannerone S, Pasquali L, Selvaggi G. Synthesis and characterization of praseodymium doped ceria powders by a microwave-assisted hydrothermal route. J Mater Chem. 2005;515:1061–6.CrossRefGoogle Scholar
  8. 8.
    Zhu ZF, Wang BL, Ma JZ. Characterization of Pr-CeO2 nanocrystallites prepared by low-temperature combustion and hydrothermal synthesis. Chin J Struct Chem. 2006;25:1270–4.Google Scholar
  9. 9.
    Kumari LS, Prabhakar PR, Reddy MLP. Environment-friendly red pigments from CeO2–Fe2O3–Pr6O11 solid solutions. J Alloys Compd. 2008;461:509–15.CrossRefGoogle Scholar
  10. 10.
    Olegario RC, Ferreira de Souza EC, Borges M, Flavio J, et al. Synthesis and characterization of Fe3+ doped cerium-praseodymium oxide pigments. Dyes Pigm. 2013;97:113–7.CrossRefGoogle Scholar
  11. 11.
    Olegario RC, Marimon JB, Antunes MR, Ferreira de Souza EC, Borges JFM, Chaves de Andrade AV, Antunes AC. Synthesis and characterization of CeO2 α-Fe2O3 and CeO2·Pr6O11 ceramic pigments through the solid state reaction and modified sol-gel method. Dyes Pigm. 2014;106:14–9.CrossRefGoogle Scholar
  12. 12.
    Dohnalová Ž, Šulcová P, Trojan M. Effect of Er3+ substitution on the quality of Mg–Fe spinel pigments. Dyes Pigm. 2009;80:22–5.CrossRefGoogle Scholar
  13. 13.
    Kalendová A, Ryšánek P, Nechvílová K. Investigation of the anticorrosion efficiency of ferrites Mg1−xZnxFe2O4 with different particle morphology and chemical composition in epoxy-ester resin-based coatings. Prog Organ Coat. 2015;86:147–63.CrossRefGoogle Scholar
  14. 14.
    Bao W, Ma F, Zhang Y, Hao X, Deng Z, Zou X, Gao W. Synthesis and characterization of Fe3+ doped Co0.5Mg0.5Al2O4 inorganic pigments with high near-infrared reflectance. Powder Technol. 2016;292:7–13.CrossRefGoogle Scholar
  15. 15.
    Han A, Zhou Y, Yang M, Feng S, Du H, Yang R. Near-infrared reflectance and thermal performance of Na2V6O16·xH2O nanoribbon as a novel cool brown pigment. Dyes Pigm. 2015;123:242–7.CrossRefGoogle Scholar
  16. 16.
    Liu L, Han A, Ye M, Zhao M. Synthesis and characterization of Al3+ doped LaFeO3 compounds: a novel inorganic pigments with high near-infrared reflectance. Sol Energy Mater Sol Cells. 2015;132:377–84.CrossRefGoogle Scholar
  17. 17.
    Dohnalová Ž, Šulcová P, Trojan M. Synthesis and characterisation of LnFeO3 pigments. J Therm Anal Calorim. 2008;91:559–63.CrossRefGoogle Scholar
  18. 18.
    Dohnalová Ž, Vontorčíková M, Šulcová P. Characterization of metal oxide-doped lutetium orthoferrite powders from the pigmentary point of view. J Therm Anal Calorim. 2013;113:1223–9.CrossRefGoogle Scholar
  19. 19.
    Luxová J, Šulcová P, Trojan M. Influence of firing temperature on the color properties of orthoferrite PrFeO3. Thermochim Acta. 2014;579:80–5.CrossRefGoogle Scholar
  20. 20.
    Opuchovic O, Kreiza G, Senvaitiene J, Kazlauskas K, Beganskiene A, Kareiva A. Sol-gel synthesis, characterization and application of selected sub-microsized lanthanide (Ce, Pr, Nd, Tb) ferrites. Dyes Pigm. 2015;118:176–82.CrossRefGoogle Scholar
  21. 21.
    James V, Prabhakar PR, Sameera S, Divya S. Multiferroic based reddish brown pigments: Bi1−xMxFeO3 (M = Y and La) for coloring applications. Ceram Int. 2014;40:2229–35.CrossRefGoogle Scholar
  22. 22.
    Brinkman K, Iijima T, Takamura H. Acceptor doped BiFeO3 ceramics: a new material for oxygen permeation membranes. Jpn J Appl Phys. 2007;46:93–6.CrossRefGoogle Scholar
  23. 23.
    Navarro MC, Jorge G, Negri M, Saleh Medina LM, Gόmez MI. Synthesis and characterization of Bi1−xNdxFeO3 (0 ≤ x ≤ 0.3) prepared by thermal decomposition of Bi1−xNdx[Fe(CN)6]·4H2O. J Therm Anal Calorim. 2015;122:73–80.CrossRefGoogle Scholar
  24. 24.
    Han L, Wu W, Qu H, Han X, Wang A, Jiao Y, Xu J. Metallic ferrites as flame retardants and smoke suppressants in flexible poly(vinyl chloride). J Therm Anal Calorim. 2016;123:293–300.CrossRefGoogle Scholar
  25. 25.
    Rojac T, Bencan A, Malic B, Tutuncu G, Jones JL, Daniels JE, Damjanovic D. BiFeO3 ceramics: processing, electrical, and electromechanical properties. J Am Ceram Soc. 2014;97:1993–2011.CrossRefGoogle Scholar
  26. 26.
    Fruth V, Tenea E, Gartner M, Anastasescu M, Berger D, Ramer R, Zaharescu M. Preparation of BiFeO3 films by wet chemical method and their characterization. J Eur Ceram Soc. 2007;27:937–40.CrossRefGoogle Scholar
  27. 27.
    Berbenni V, Milanese Ch, Bruni G, Girella A, Marini A. Mechanical activation of the solid-phase reaction between bismuth citrate and iron(II) oxalate dihydrate to yield BiFeO3. Ceram Int. 2015;41:7216–20.CrossRefGoogle Scholar
  28. 28.
    Maître A, François M, Gachon JC. Experimental study of the Bi2O3–Fe2O3 pseudo-binary system. J Phase Equilib. 2004;25:59–67.CrossRefGoogle Scholar
  29. 29.
    Palai R, Katiyar RS, Schmid H, Tissot P, Clark SJ, Robertson J, Redfern SAT, Catalan G, Scott JF. β phase and γ-β metal-insulator transition in multiferroic BiFeO3. Phys Rev B. 2008;77:014110.CrossRefGoogle Scholar
  30. 30.
    Scott JF, Palai R, Kumar A, Singh MJK, Murari NM, Karan NK, Katiyar RS. New phase transitions in perovskite oxides: BiFeO3, SrSnO3, and Pb(Fe2/3W1/3)1/2Ti1/2O3. J Am Ceram Soc. 2008;91:1762–8.CrossRefGoogle Scholar
  31. 31.
    Selbach SM, Einarsrud MA, Grande T. On the thermodynamic stability of BiFeO3. Chem Mater. 2009;21:169–73.CrossRefGoogle Scholar
  32. 32.
    Li J, Duan Y, He H, Song D. Crystal structure, electronic structure, and magnetic properties of bismuth-strontium ferrites. J Alloys Compd. 2001;315:259–64.CrossRefGoogle Scholar
  33. 33.
    Joint Committee on Powder Diffraction Standards. International centre of diffraction data. Swarthmore: JCPDS; 1983.Google Scholar
  34. 34.
    Commission Internationale de l′Eclairage. Recommendations on uniform colour spaces, colour difference equations, psychometric colopur terms. Supplement no. 2 of CIE publication no. 15 (E1-1,31) 1971, Paris Bureau Central de la CIE; 1978.Google Scholar
  35. 35.
    Šulcová P, Trojan M. Thermal analysis of the (Bi2O3)1−x(Y2O3)x pigments. J Therm Anal Calorim. 2008;91:151–4.CrossRefGoogle Scholar
  36. 36.
    Mesíková Ž, Šulcová P, Trojan M. Synthesis and description of SrSn0.6Ln0.4O3 perovskite pigments. J Therm Anal Calorim. 2007;91:163–6.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Žaneta Dohnalová
    • 1
  • Petra Šulcová
    • 1
  • Petr Bělina
    • 1
  • Milan Vlček
    • 2
    • 3
  • Nataliia Gorodylova
    • 1
  1. 1.Department of Inorganic Technology, Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic
  2. 2.Institute of Macromolecular ChemistryAcademy of Sciences of the Czech RepublicPragueCzech Republic
  3. 3.Joint Laboratory of Solid State Chemistry, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech RepublicUniversity of PardubicePardubiceCzech Republic

Personalised recommendations