Skip to main content
Log in

Thermodynamic properties of tetraphenylantimony 1-adamantanecarboxylate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present work for the first time, the temperature dependence of the heat capacity \(C_{\text{p}}^{\text{o}}\) = f(T) of tetraphenylantimony (1-adamantanecarboxylate) was determined in the range 5.6–456 K by methods adiabatic vacuum calorimetry and differential scanning calorimetry. The compound fuses in the range 414–446 K without decomposition, and thermodynamic characteristics of fusion were defined and analyzed. Multifractal treatment of low-temperature heat capacity was made as a result topological structure of the compound was established. The complex of standard thermodynamic functions (enthalpy, entropy, the Gibbs energy) was given for crystal and liquid states in the range from T → 0 to 456 K. Also, standard entropy of formation of a substance in the crystalline state at T = 298.15 K was calculated. Comparison of thermodynamic properties was made for the derivatives of antimony studied in the present work and earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Katerina T, Petra S. Synthesis and study of mixed oxide inorganic pigment from Bi2O3–ZnO–CeO2 system. J Therm Anal Calorim. 2017;130:57–62.

    Article  Google Scholar 

  2. Rai US, Singh Manjeet, Rai RN. Some physicochemical studies on organic eutectics and intermolecular compounds. J Therm Anal Calorim. 2017;130:967–74.

    Article  CAS  Google Scholar 

  3. Gielen M, Tiekink ERT. Metallotherapeutic drug and metal-based diagnostic agents. Hoboken: Wiley; 2005.

    Book  Google Scholar 

  4. Pellerito L, Nagy L. Organotin(IV)n+ complexes formed with biologically active ligands: equilibrium and structural studies, and some biological aspects. Coord Chem. 2002;224:111.

    Article  CAS  Google Scholar 

  5. Takahashi S, Sato H, Kubota Y, Utsumi H, Bedford JS, Okayasu R. Inhibition of DNA-double strand break repair by antimony compounds. Toxicology. 2002;180:249.

    Article  CAS  Google Scholar 

  6. Wang G-C, Yong-Na L, Xiao J, Lin Y, Song H-B, Li J-S, Cui J-R, Wang R-Q, Ran F-X. Synthesis, crystal structures and in vitro antitumor activities of some organoantimony arylhydroxamates. J Organomet Chem. 2005;690:151–6.

    Article  CAS  Google Scholar 

  7. Sharutin VV, Sharutina OK, Pakusina AP, Platonova TP, Smirnova SV, Pushilin MA, Gerasimenko AV. Structural features of triorganylantimony dicarboxylates R3Sb[OC(O)R′)]2. Rus J Coordination Chem. 2003;29:780–9.

    Article  CAS  Google Scholar 

  8. Ma C, Zhang Q, Sun J, Zhang R. Syntheses, characterizations and crystal structures of new organoantimony(V) complexes with heterocyclic (S, N) ligand. J Organomet Chem. 2006;691:2567–74.

    Article  CAS  Google Scholar 

  9. Ivanov MA, Antzutkin ON, Sharutin VV, Ivanov AI, Pakusina AP, Pushilin MA, Forsling W. Preparation and structural organisation of heteroleptic tetraphenylantimony(V) complexes comprising unidentately and bidentately coordinated O, O′-dialkyldithiophosphate groups: multinuclear (13C, 31P) CP/MAS NMR and single-crystal X-ray diffraction studies. Inorg Chim Acta. 2007;360:2897–904.

    Article  CAS  Google Scholar 

  10. Sharutin VV, Sharutina OK. Bis(tetraphenylantimony) succinate, malate, and tartrate: syntheses and structures. Rus J Coord Chem. 2014;40:643–7.

    Article  CAS  Google Scholar 

  11. Gupta A, Sharma RK, Bohra R, Jain VK, Drake JE, Hursthouse MB, Light ME. Synthetic, spectroscopic and structural aspects of triphenylantimony(V) complexes with internally functionalized oximes: crystal and molecular structure of[Ph3Sb{ON=C(Me)C5H4 N-2}2]. Polyhedron. 2002;21:2387–92.

    Article  CAS  Google Scholar 

  12. Sharutin VV, Molokova OV, Sharutina OK, Gerasimenko AV, Pushilin MA. Synthesis and structure of triarylantimony dioximates. Rus J Gen Chem. 2004;74:1485–91.

    Article  CAS  Google Scholar 

  13. Sharutin VV, Senchurin VS, Fastovets OA, Pakusina AP, Sharutina OK. Tetraphenylantimony perrhenate and tetraphenylantimony chlorate: syntheses and structures. Rus J Inorg Chem. 2009;54:389–95.

    Article  Google Scholar 

  14. Dodonov VA, Gushchin AV, Gor´kaev DA, Fukin GK, Starostina TI, Kurskii LN, Shavyrin AS. Synthesis and structures of triphenylantimony oximates. Russ Chem Bull. 2002;51:1051–7.

    Article  CAS  Google Scholar 

  15. Luan SR, Zhu YH, Jia YQ, Cao Q. Characterization and thermal analysis of thiourea and bithmuth trichloride complex. J Therm Anal Cal. 2010;99:523–30.

    Article  CAS  Google Scholar 

  16. Fomin VM, Markin AV. Oxidation mechanism of ferrocene with molecular oxygen. Kinetic and thermodynamic aspects. J Therm Anal Cal. 2008;92:985–7.

    Article  CAS  Google Scholar 

  17. Ribeiro da Silva MAV, Santos AFLOM. Energetics of some sulphur heterocycles. Thiophene derivatives. J Therm Anal Cal. 2009;95:333–44.

    Article  CAS  Google Scholar 

  18. Smirnova NN, Letyanina IA, Larina VN, Markin AV, Sharutin VV, Senchurin VS. Thermodynamic properties of pentaphenylantimony Ph5Sb over the range from T → 0 K to 400 K. J Chem Thermodyn. 2009;41:46–50.

    Article  CAS  Google Scholar 

  19. Letyanina IA, Markin AV, Smirnova NN, Sologubov SS, Sharutin VV. Heat Capacity and Standard Thermodynamic Functions of Triphenylantimony Bis(1-adamantanecarboxylate) over the Range from (0 to 520) K. J Chem Eng Data. 2013;58:3087.

    Article  CAS  Google Scholar 

  20. Markin AV, Letyanina IA, Ruchenin VA, Smirnova NN, Gushchin AV, Shashkin DV. Heat capacity and standard thermodynamic functions of triphenylantimony dimethacrylate over the temperature range from (0 to 400) K. J Chem Eng Data. 2011;56:3657.

    Article  CAS  Google Scholar 

  21. Markin AV, Smirnova NN, Lyakaev DV, Klimova MN, Sharutin VV, Sharutina OK. Thermodynamics of dibenzoate triphenilantimony. Rus J Phys Chem. 2016;90:1–8.

    Article  Google Scholar 

  22. Markin AV, Smirnova NN, Lyakaev DV, Sharutin VV, Sharutina OK. Thermodynamic properties of triphenylantimony dipropionate Ph3Sb(OC(O)C2H5)2 over the range from T → 0 to 430 K. J Chem Thermodyn. 2017;106:303–8.

    Article  CAS  Google Scholar 

  23. Letyanina IA, Markin AV, Smirnova NN, Klimova MN, Kalistratova OV, Gushchin AV. Calorimetric study of organic compounds of antimony and bismuth Ph3Sb(O2CCH=CHCH3)2 and Ph3Bi(O2CCH=CHCH3)2. J Therm Anal Calorim. 2016;125:339–49.

    Article  CAS  Google Scholar 

  24. Sharutin VV, Senchurin VS, Sharutina OK, Pakusina AP, Smirnova SA. Synthesis and Structure of Tetraphenylantimony 1-Adamantanecarboxylate and Triphenylantimony bis(1-adamantanecarboxylate). Rus J Inorg Chem. 2009;54:389–95.

    Article  Google Scholar 

  25. Varushchenko RM, Druzhinina AI, Sorkin EL. Low-temperature heat capacity of 1-bromoperfluorooctane. J Chem Thermodyn. 1997;29:623–7.

    Article  CAS  Google Scholar 

  26. Malyshev VM, Milner GA, Sorkin EL, Shibakin VF. Automatic low-temperature calorimeter. Prib Tekh Eksp. 1985;6:195–7.

    Google Scholar 

  27. Höhne GWH, Hemminger WF, Flammersheim H-J. Differential scanning calorimetry. 2nd ed. Heidelberg: Springer; 2003.

    Book  Google Scholar 

  28. Drebushchak VA. Calibration coefficient of heat-flow DSC. Part II. Optimal calibration procedure. J Therm Anal Cal. 2005;79:213–8.

    Article  CAS  Google Scholar 

  29. Meija J, Coplen TB, Berglund M, Brand WA, De Bievre P, Groning M, Holden NE, Irrgeher J, Loss RD, Walczyk T, Prohaska T. Atomic weights of the elements 2013. Pure Appl Chem. 2016;88:265–91.

    CAS  Google Scholar 

  30. Lazarev VB, Izotov AD, Gavrichev KS, Shebershneva OV. Fractal model of heat capacity for substances with diamond-like structures. Thermochim Acta. 1995;269–70:109–16.

    Article  Google Scholar 

  31. Tarasov VV. Theory of heat capacity of chain and layer structures. Zh Fiz Khim. 1950;24:111–28.

    CAS  Google Scholar 

  32. Rabinovich IB, Nistratov VP, Telnoy VI, Sheiman MS. Thermochemical and thermodynamic properties of organometallic compounds. New York: Begell House Inc., Publishers; 1999.

    Google Scholar 

  33. Cox JD, Wagman DD, Medvedev VA. Codata key values for thermodynamics. New York; 1984 (database http://webbook.nist.gov/chemistry/).

  34. DeSorbo W. The low temperature specific heat of antimony. Acta Metall. 1953;1:503–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Education and Science of The Russian Federation (Organization of Scientific Research, No. 4.6138.2017/6.7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Markin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyakaev, D.V., Markin, A.V., Smirnova, N.N. et al. Thermodynamic properties of tetraphenylantimony 1-adamantanecarboxylate. J Therm Anal Calorim 133, 1143–1148 (2018). https://doi.org/10.1007/s10973-017-6803-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6803-5

Keywords

Navigation