Skip to main content
Log in

Nonisothermal crystallization studies of PBT/ZnO compounds

Ozawa and Mo model

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Compounds of poly(butylene terephthalate) (PBT) and zinc oxide (ZnO) with filler content between 1 and 10% were prepared in a laboratory internal mixer. The processing parameters did not damage PBT thermal stability or its molecular weight as evidenced by torque rheology. The melt crystallization of PBT/ZnO compounds was investigated by differential scanning calorimetry and their morphology by scanning electron microscopy and optical microscopy. From morphological analyses, ZnO particles are well dispersed in PBT matrix, which crystallizes in typical spherulites. The melt crystallization temperatures and maximum melt crystallization rates are almost unaffected by the filler. Equally the overall crystallinity did not show any dependence on the filler content or the cooling rate. Mo’s model was found to be suitable for a description of the melt crystallization kinetics, while Ozawa model turned out to be inadequate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Al-Mulla A, Mathew J, Yeh S-K, Gupta R. Nonisothermal crystallization kinetics of PBT nanocomposites. Compos A. 2008;39:204–17.

    Article  Google Scholar 

  2. Acierno D, Scarfato P, Amendola E, Nocerino G, Costa G. Preparation and characterization of PBT nanocomposites compounded with different montmorillonites. Polym Eng Sci. 2004;44:1012–8.

    Article  CAS  Google Scholar 

  3. Deshmukh GS, Peshwe DR, Pathak SU, Ekhe JD. Nonisothermal crystallization kinetics and melting behavior of poly (butylene terephthalate) and calcium carbonate nanocomposites. Thermochim Acta. 2015;606:66–76.

    Article  CAS  Google Scholar 

  4. Che J, Luan B, Yang X, Lu L, Wang X. Graft polymerization onto nano-sized SiO2 surface and its application to the modification of PBT. Mater Lett. 2005;59:1603–9.

    Article  CAS  Google Scholar 

  5. Deshmukh GS, Peshwea DR, Pathaka SU, Ekheba JD. Nonisothermal crystallization kinetics and melting behavior of poly(butylene terephthalate) (PBT) composites based on different types of functional fillers. Thermochim Acta. 2014;581:41–53.

    Article  CAS  Google Scholar 

  6. Díez-Pascual M, Díez-Vicente AL. Poly(3-hydroxybutyrate)/ZnO bionano-composites with improved mechanical, barrier and antibacterial properties. Int J Mol Sci. 2014;17:10950–73.

    Article  Google Scholar 

  7. Yu W, Lan C, Wang S, Fang P, Sun Y. Influence of zinc oxide nanoparticles on the crystallization behavior of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofibers. Polymer. 2010;51:2403–9.

    Article  CAS  Google Scholar 

  8. Hernandezbattez A, Gonzalez R, Viesca J, Fernandez J, Diazfernandez J, MacHado A, Chou R, Riba J. CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear. 2008;265:422.

    Article  CAS  Google Scholar 

  9. Padmavathy N, Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mater. 2008;9:035004.

    Article  Google Scholar 

  10. Chen P, Zhou H, Liu W, Zhang M, Du Z, Wang X. The synergistic effect of zinc oxide and phenylphosphonic acid zinc salt on the crystallization behavior of poly (lactic acid). Polym Degrad Stab. 2015;122:25–35.

    Article  CAS  Google Scholar 

  11. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.

    Article  CAS  Google Scholar 

  12. Liu T, Mo Z, Wang S, Zhang H. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci. 1997;37:568–75.

    Article  CAS  Google Scholar 

  13. Liu T, Mo Z, Wang S, Zhang H. Nonisothermal crystallization behavior of a novel poly(aryl ether ketone): PEDEKmK. J Appl Polym Sci. 1998;67:815–21.

    Article  CAS  Google Scholar 

  14. Righetti MC, Di Lorenzo ML, Angiuli M, Tombari E, La Pietra P. Poly(butylene terephthalate)/poly(e-caprolactone) blends: Influence of PCL molecular mass on PBT melting and crystallization behavior. Eur Polym J. 2007;43:4726–38.

    Article  CAS  Google Scholar 

  15. Alves TS, Neto JES, Silva SML, Carvalho LH, Canedo EL. Process simulation of laboratory internal mixers. Polym Test. 2016;50:94–100.

    Article  CAS  Google Scholar 

  16. Costa ARM, Almeida TG, Silva SML, Carvalho LH, Canedo EL. Chain extension in poly(butylene-adipate-terephthalate). Inline analysis in a laboratory internal mixer. Polym Test. 2015;42:115–21.

    Article  CAS  Google Scholar 

  17. Duarte IS, Tavares AA, Lima PS, Andrade DLACS, Carvalho LH, Canedo EL, Silva SML. Chain extension of virgin and recycled poly(ethylene terephthalate): effect of processing conditions and reprocessing. Polym Degrad Stab. 2016;124:26–34.

    Article  CAS  Google Scholar 

  18. Tavares AA, Silva DFA, Lima PS, Andrade DLACS, Silva SML, Canedo EL. Chain extension of virgin and recycled polyethylene terephthalate. Polym Test. 2016;50:26–32.

    Article  CAS  Google Scholar 

  19. Almeida TG, Neto JES, Costa ARM, Silva AS, Carvalho LH, Canedo EL. Degradation during processing in poly(butylene adipate-co-terephthalate)/vegetable fiber compounds estimated by torque rheometry. Polym Test. 2016;55:204–11.

    Article  CAS  Google Scholar 

  20. Marinho VAD, Pereira CAB, Vitorino MBC, Silva AS, Carvalho LH, Canedo EL. Degradation and recovery in poly(butylene adipate-co-terephthalate)/thermoplastic starch blends. Polym Test. 2017;58:166–72.

    Article  CAS  Google Scholar 

  21. Yin H, Dittrich B, Farooq M, Kerling S, Wartig K-A, Hofmann D, Huth C, Okolieocha C, Altstädt V, Schönhals A, Schartel B. Carbon-based nanofillers/poly(butylene terephthalate): thermal, dielectric, electrical and rheological properties. J Polym Res. 2015;22:140.

    Article  Google Scholar 

  22. Chen Y, Wang X, Wu D. Recycled carbon fiber reinforced poly(butylene terephthalate) thermoplastic composites: fabrication, crystallization behaviors and performance evaluation. Polym Adv Technol. 2013;24:364–75.

    Article  CAS  Google Scholar 

  23. Oburoğlu N, Ercan N, Durmus A, Kaşgöz A. Effects of halloysite nanotube on the mechanical properties and nonisothermal crystallization kinetics of poly(butylene terephthalate) (PBT). J Macromol Sci B. 2012;51:860–79.

    Article  Google Scholar 

  24. Wu D, Zhou C, Fan X, Mao D, Bian Z. Nonisothermal crystallization kinetics of poly(butylene terephthalate)/montmorillonite nanocomposites. J Appl Polym Sci. 2006;99:3257–65.

    Article  CAS  Google Scholar 

  25. Deshmukh GS, Peshwe DR, Pathak SU, Ekhe JD. Nonisothermal crystallization kinetics and melting behavior of poly(butylene terephthalate) and calcium carbonate nanocomposites. Thermochim Acta. 2015;606:66–76.

    Article  CAS  Google Scholar 

  26. Deshmukh GS, Peshwe DR, Pathak SU, Ekhe JD. Nonisothermal crystallization kinetics and melting behavior of poly(butylene terephthalate) (PBT) composites based on different types of functional fillers. Thermochim Acta. 2014;581:41–53.

    Article  CAS  Google Scholar 

  27. Zhang L, Hong Y, Zhang T, Li C. Nonisothermal crystallization behaviors of poly(butylene terephthalate) nucleated with elastomer-modified nano-SiO2 a commercial nucleating agent (P250), and talc. J Macromol Sci, Phys. 2010;49:514–27.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to José William de Lima Souza (CERTBIO–UFCG) for optical microscopy and scanning electron microscopy images. NGJ and IDSS thank CNPq for their fellowship. AR thanks CAPES for his post-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Ries.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2653 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guimarães Jaques, N., dos Santos Silva, I.D., Ries, A. et al. Nonisothermal crystallization studies of PBT/ZnO compounds. J Therm Anal Calorim 131, 2569–2577 (2018). https://doi.org/10.1007/s10973-017-6754-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6754-x

Keywords

Navigation