Skip to main content
Log in

Pyrolysis of pine needles: effects of process parameters on products yield and analysis of products

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Pyrolysis of pine needles was carried out in a semi-batch reactor. The effects of pyrolysis parameters such as temperature (350–650 °C), heating rate (10 and 50 °C min−1), nitrogen flow rate (50–200 cm3 min−1) and biomass particle size (0.25–1.7 mm) were examined on products yield. Maximum bio-oil yield of 43.76% was obtained at pyrolysis temperature of 550 °C with a heating rate of 50 °C min−1, nitrogen flow rate of 100 cm3 min−1 for biomass particle size of 0.6 < d p < 1 mm. The characterization of pyrolysis products (bio-oil, bio-char) has been made through different instrumental methods like Fourier transform infrared spectroscopy, gas chromatography–mass spectrometry, nuclear magnetic resonance spectroscopy (1H NMR), X-ray powder diffraction, field emission scanning electron microscope and Brunauer–Emmett–Teller surface area analysis. The empirical formula of the bio-oil and bio-char was found as CH1.47O0.36N0.005 and CH0.56O0.28N0.013 with heating value of 26.25 and 25.50 MJ kg−1, respectively. Results show that bio-oil can be potentially valuable as a renewable fuel after upgrading and can be used as a feedstock for valuable chemicals production. The properties of bio-char reveal that it can be used as solid fuels, as a cheap adsorbent and as a feedstock for activated carbon production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Antal MJJ, Varhegyi G. Cellulose pyrolysis kinetics: the current state of knowledge. Ind Eng Chem Res. 1995;34:703–17.

    Article  CAS  Google Scholar 

  2. Zhang L, Xu CC, Champagne P. Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers Manag. 2010;51:969–82.

    Article  CAS  Google Scholar 

  3. Moralı U, Şensöz S. Pyrolysis of hornbeam shell (Carpinus betulus L.) in a fixed bed reactor: characterization of bio-oil and bio-char. Fuel. 2015;150:672–8.

    Article  Google Scholar 

  4. Demiral İ, Şensöz S. Fixed-bed pyrolysis of hazelnut (Corylus avellana L.) bagasse: influence of pyrolysis parameters on product yields. Energy Source Part A. 2006;28:1149–58.

    Article  CAS  Google Scholar 

  5. Raveendran K, Ganesh A, Khilar KC. Pyrolysis characteristics of biomass and biomass components. Fuel. 1996;75:987–98.

    Article  CAS  Google Scholar 

  6. Varma AK, Mondal P. Physicochemical characterization and kinetic study of pine needle for pyrolysis process. J Therm Anal Calorim. 2015;124:487–97.

    Article  Google Scholar 

  7. Shafizadeh F. Introduction to pyrolysis of biomass. J Anal Appl Pyrolysis. 1982;3:283–305.

    Article  CAS  Google Scholar 

  8. Saikia R, Chutia RS, Kataki R, Pant KK. Perennial grass (Arundo donax L.) as a feedstock for thermo-chemical conversion to energy and materials. Bioresour Technol. 2015;188:265–72.

    Article  CAS  Google Scholar 

  9. Akhtar J, Amin NS. A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew Sustain Energy Rev. 2012;16:5101–9.

    Article  CAS  Google Scholar 

  10. Ningbo G, Baoling L, Aimin L, Juanjuan L. Continuous pyrolysis of pine sawdust at different pyrolysis temperatures and solid residence times. J Anal Appl Pyrolysis. 2015;114:155–62.

    Article  Google Scholar 

  11. Salehi E, Abedi JT. Harding, bio-oil from sawdust: pyrolysis of sawdust in a fixed-bed system. Energy Fuels. 2009;23:3767–72.

    Article  CAS  Google Scholar 

  12. Becidan M, Várhegyi G, Hustad JE, Skreiberg O. Thermal decomposition of biomass wastes. A kinetic study. Ind Eng Chem Res. 2007;46:2428–37.

    Article  CAS  Google Scholar 

  13. Yorgun S, Şensöz S, Koçkar ÖM. Characterization of the pyrolysis oil produced in the slow pyrolysis of sunflower-extracted bagasse. Biomass Bioenergy. 2001;20:141–8.

    Article  CAS  Google Scholar 

  14. Hernandez-Mena LE, Pécoraa AA, Beraldob AL. Slow pyrolysis of bamboo biomass: analysis of biochar properties. Chem Eng. 2014;37:115–20.

    Google Scholar 

  15. Chouhan APS. A slow pyrolysis of cotton stalk (Gossypium arboretum) waste for bio-oil production. J Pharm Chem Biol Sci. 2015;3:143–9.

    CAS  Google Scholar 

  16. Mohammed IY, Abakr YA, Kazi FK, Yusuf S, Alshareef I, Chin SA. Pyrolysis of napier grass in a fixed bed reactor: effect of operating conditions on product yields and characteristics. BioResources. 2015;10:6457–78.

    CAS  Google Scholar 

  17. Suttibak S, Sriprateep K, Pattiya A. Production of bio-oil from pine sawdust by rapid pyrolysis in a fluidized-bed reactor. Energy Source Part A. 2015;37:1440–6.

    Article  CAS  Google Scholar 

  18. Lazzari E, Schena T, Primaz CT, da Silva Maciel GP, Machado ME, Cardoso CAL, Jacques RA, Caramão EB. Production and chromatographic characterization of bio-oil from the pyrolysis of mango seed waste. Ind Crops Prod. 2016;83:529–36.

    Article  CAS  Google Scholar 

  19. Wagenaar BM, Prins W, Swaaij VW. Flash pyrolysis kinetics of pine wood. Fuel Process Technol. 1993;3:6291–8.

    Google Scholar 

  20. Chen D, Zhou J, Zhang Q. Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo. Bioresour Technol. 2014;169:313–9.

    Article  CAS  Google Scholar 

  21. Liu Z, Zhang FS, Wu J. Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment. Fuel. 2010;89:510–4.

    Article  CAS  Google Scholar 

  22. Özbay G. Catalytic pyrolysis of pine wood sawdust to produce bio-oil: effect of temperature and catalyst additives. J Wood Chem Technol. 2015;35:302–13.

    Article  Google Scholar 

  23. Westerhof RJ, Brilman DWF, Garcia-Perez M, Wang Z, Oudenhoven SR, Kersten SR. Stepwise fast pyrolysis of pine wood. Energy Fuels. 2012;26:7263–73.

    Article  CAS  Google Scholar 

  24. Dhaundiyal A, Gangwar J. Kinetics of the thermal decomposition of pine needles. Acta Univ Sapientiae Agric Environ. 2015;7:5–22.

    Google Scholar 

  25. Font R, Conesa JA, Moltó J, Munoz M. Kinetics of pyrolysis and combustion of pine needles and cones. J Anal Appl Pyrolysis. 2009;85:276–86.

    Article  CAS  Google Scholar 

  26. Safi MJ, Mishra IM, Prasad B. Global degradation kinetics of pine needles in air. Thermochim Acta. 2004;412:155–62.

    Article  CAS  Google Scholar 

  27. Statheropoulos M, Liodakis S, Tzamtzis N, Pappa A, Kyriakou S. Thermal degradation of pinus halepensis pine-needles using various analytical methods. J Anal Appl Pyrolysis. 1997;43:115–23.

    Article  CAS  Google Scholar 

  28. Varma AK, Mondal P. Physicochemical characterization and pyrolysis kinetic study of sugarcane bagasse using thermogravimetric analysis. J Energy Resour Technol. 2016;138:052205.

    Article  Google Scholar 

  29. Kim P, Johnson A, Edmunds CW, Radosevich M, Vogt F, Rials TG, Labbe N. Surface functionality and carbon structures in lignocellulosic-derived biochars produced by fast pyrolysis. Energy Fuels. 2011;25:4693–703.

    Article  CAS  Google Scholar 

  30. Asadullah M, Rahman MA, Ali MM, Rahman MS, Motin MA, Sultan MB, Alam MR. Production of bio-oil from fixed-bed pyrolysis of bagasse. Fuel. 2007;86:2514–20.

    Article  CAS  Google Scholar 

  31. Jeguirim M, Trouvé G. Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis. Bioresour Technol. 2009;100:4026–31.

    Article  CAS  Google Scholar 

  32. Ackalın K. Pyrolytic characteristics and kinetics of pistachio shell by thermogravimetric analysis. J Therm Anal Calorim. 2012;109:227–35.

    Article  Google Scholar 

  33. Chutia RS, Kataki R, Bhaskar T. Characterization of liquid and solid product from pyrolysis of Pongamia glabra deoiled cake. Bioresour Technol. 2014;165:336–42.

    Article  CAS  Google Scholar 

  34. Şensöz S, Demiral İ, Gerçel HF. Olive bagasse (Olea europea L.) pyrolysis. Bioresour Technol. 2006;97:429–36.

    Article  Google Scholar 

  35. Encinar JM, Gonzalez JF, Gonzalez J. Fixed-bed pyrolysis of Cynara cardunculus L. Product yields and compositions. Fuel Process Technol. 2000;68:209–22.

    Article  CAS  Google Scholar 

  36. Haykiri-Acma H. The role of particle size in the non-isothermal pyrolysis of hazelnut shell. J Anal Appl Pyrolysis. 2006;75:211–6.

    Article  CAS  Google Scholar 

  37. Uzun BB, Pütün AE, Pütün E. Fast pyrolysis of soybean cake: product yields and compositions. Bioresour Technol. 2006;97:569–76.

    Article  CAS  Google Scholar 

  38. Maggi R, Delmon B. Comparison between slow and flash pyrolysis oils from biomass. Fuel. 1994;73:671–7.

    Article  CAS  Google Scholar 

  39. Acıkgoz C, Onay O, Kockar OM. Fast pyrolysis of linseed: product yields and compositions. J Anal Appl Pyrolysis. 2004;71:417–29.

    Article  Google Scholar 

  40. Ekinci E, Citiroglu M, Putun E, Love GD, Lafferty CJ, Snapet CE. Effect of lignite addition and steam on the pyrolysis of Turkish oil shales. Fuel. 1992;71:1511–4.

    Article  CAS  Google Scholar 

  41. Majhi A, Sharma YK, Naik DV, Chauhan R. The production and evaluation of bio-oil obtained from the Jatropha curcas cake. Energy Source Part A. 2015;37:1782–9.

    Article  CAS  Google Scholar 

  42. Yorgun S, Yıldız D. Slow pyrolysis of paulownia wood: effects of pyrolysis parameters on product yields and bio-oil characterization. J Anal Appl Pyrolysis. 2015;114:68–78.

    Article  CAS  Google Scholar 

  43. Şensöz S, Angın D. Pyrolysis of safflower (Charthamustinctorius L.) seed press cake: part 1. The effects of pyrolysis parameters on the product yields. Bioresour Technol. 2008;99:5492–7.

    Article  Google Scholar 

  44. Rout T, Pradhan D, Singh RK, Kumari N. Exhaustive study of products obtained from coconut shell pyrolysis. J Environ Chem Eng. 2016;4:3696–705.

    Article  CAS  Google Scholar 

  45. Demiral I, Ayan EA. Pyrolysis of grape bagasse: effect of pyrolysis conditions on the product yields and characterization of the liquid product. Bioresour Technol. 2011;102:3946–51.

    Article  CAS  Google Scholar 

  46. Lee MK, Tsai WT, Tsai YL, Lin SH. Pyrolysis of napier grass in an induction-heating reactor. J Anal Appl Pyrolysis. 2010;88:110–6.

    Article  CAS  Google Scholar 

  47. Singh VK, Soni AB, Kumar S, Singh RK. Pyrolysis of sal seed to liquid product. Bioresour Technol. 2014;151:432–5.

    Article  CAS  Google Scholar 

  48. Yakub MI, Abdalla AY, Feroz KK, Suzana Y, Ibraheem A, Chin SA. Pyrolysis of oil palm residues in a fixed bed tubular reactor. J Power Energy Eng. 2015;31:85–93.

    Google Scholar 

  49. Pradhan D, Singh RK, Bendu H, Mund R. Pyrolysis of mahua seed (Madhucaindica)—production of bio-fuel and its characterization. Energy Convers Manag. 2016;108:529–38.

    Article  CAS  Google Scholar 

  50. Mantilla SV, Gauthier-Maradei P, Gil PÁ, Cárdenas ST. Comparative study of bio-oil production from sugarcane bagasse and palm empty fruit bunch: yield optimization and bio-oil characterization. J Anal Appl Pyrolysis. 2014;108:284–94.

    Article  Google Scholar 

  51. Azargohar R, Jacobson KL, Powell EE, Dalai AK. Evaluation of properties of fast pyrolysis products obtained from Canadian waste biomass. J Anal Appl Pyrolysis. 2013;104:330–40.

    Article  CAS  Google Scholar 

  52. Lu Q, Yang X, Zhu X. Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk. J Anal Appl Pyrolysis. 2008;82:191–8.

    Article  CAS  Google Scholar 

  53. Abnisa F, Arami-Niya A, Daud WW, Sahu JN, Noor IM. Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis. Energy Convers Manag. 2013;76:1073–82.

    Article  CAS  Google Scholar 

  54. Bordoloi N, Narzari R, Chutia RS, Bhaskar T, Kataki R. Pyrolysis of Mesua ferrea and Pongamia glabra seed cover: characterization of bio-oil and its sub-fractions. Bioresour Technol. 2015;178:83–9.

    Article  CAS  Google Scholar 

  55. Islam MR, Haniu H, Islam MN, Uddin MS. Thermochemical conversion of sugarcane bagasse into bio-crude oils by fluidized-bed pyrolysis technology. J Therm Sci Technol. 2010;5:11–23.

    Article  CAS  Google Scholar 

  56. Islam MR, Islam MN, Nabi MN. Bio-crude oil from fluidized bed pyrolysis of rice-straw and its characterization. Int Energy J. 2002;3:1–11.

    Google Scholar 

  57. Chen D, Chen X, Sun J, Zheng Z, Fu K. Pyrolysis polygeneration of pine nut shell: quality of pyrolysis products and study on the preparation of activated carbon from biochar. Bioresour Technol. 2016;216:629–36.

    Article  CAS  Google Scholar 

  58. Chen W, Shi S, Zhang J, Chen M, Zhou X. Co-pyrolysis of waste newspaper with high-density polyethylene: synergistic effect and oil characterization. Energy Convers Manag. 2016;112:41–8.

    Article  CAS  Google Scholar 

  59. Tsai WT, Lee MK, Chang YM. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J Anal Appl Pyrolysis. 2006;76:230–7.

    Article  CAS  Google Scholar 

  60. Sütcü H, Toroglu I, Piskin S. Structural characterization of oil component of high temperature pyrolysis tars. Energy Sources. 2005;27:521–34.

    Article  Google Scholar 

  61. Balagurumurthy B, Srivastava V, Kumar J, Biswas B, Singh R, Gupta P, Kumar KS, Singh R, Bhaskar T. Value addition to rice straw through pyrolysis in hydrogen and nitrogen environments. Bioresour Technol. 2015;188:273–9.

    Article  CAS  Google Scholar 

  62. Mullen CA, Strahan GD, Boateng AA. Characterization of various fast-pyrolysis bio-oils by NMR spectroscopy. Energy Fuels. 2009;23:2707–18.

    Article  CAS  Google Scholar 

  63. Lee Y, Park J, Ryu C, Gang KS, Yang W, Park YK, Jung J, Hyun S. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C. Bioresour Technol. 2013;148:196–201.

    Article  CAS  Google Scholar 

  64. Reuss JO, Johnson DW. Effect of soil processes on the acidification of water by acid deposition. J Environ Qual. 1985;14:26–31.

    Article  CAS  Google Scholar 

  65. Malhi SS, Nyborg M, Harapiak JT. Effects of long-term N fertilizer-induced acidification and liming on micronutrients in soil and in brome grass hay. Soil Tillage Res. 1998;48:91–101.

    Article  Google Scholar 

  66. Sellin N, Krohl DR, Marangoni C, Souza O. Oxidative fast pyrolysis of banana leaves in fluidized bed reactor. Renew Energy. 2016;96:56–64.

    Article  CAS  Google Scholar 

  67. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86:1781–8.

    Article  CAS  Google Scholar 

  68. Boon JJ, Pastorova I, Botto RE, Arisz PW. Structural studies on cellulose pyrolysis and cellulose chars by PYMS, PYGCMS, FTIR, NMR and by wet chemical techniques. Biomass Bioenergy. 1994;7:25–32.

    Article  CAS  Google Scholar 

  69. Tinwala F, Mohanty P, Parmar S, Patel A, Pant KK. Intermediate pyrolysis of agro-industrial biomasses in bench-scale pyrolyser: product yields and its characterization. Bioresour Technol. 2015;188:258–64.

    Article  CAS  Google Scholar 

  70. Ertas M, Alma MH. Pyrolysis of laurel (Laurusnobilis L.) extraction residues in a fixed-bed reactor: characterization of bio-oil and bio-char. J Anal Appl Pyrolysis. 2010;88:22–9.

    Article  CAS  Google Scholar 

  71. Yang Z, Jiang ZH, So CL, Hse CY. Rapid prediction of wood crystallinity in Pinus elliotii plantation wood by near-infrared spectroscopy. J Wood Sci. 2007;53:449–53.

    Article  Google Scholar 

  72. Yao Y, Gao B, Inyang M, Zimmerman AR, Cao X, Pullammanappallil P, et al. Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential. Bioresour Technol. 2011;102:6273–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasenjit Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varma, A.K., Mondal, P. Pyrolysis of pine needles: effects of process parameters on products yield and analysis of products. J Therm Anal Calorim 131, 2057–2072 (2018). https://doi.org/10.1007/s10973-017-6727-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6727-0

Keywords

Navigation