Journal of Thermal Analysis and Calorimetry

, Volume 130, Issue 3, pp 1817–1827 | Cite as

Application of TG/FTIR TG/MS and cone calorimetry to understand flame retardancy and catalytic charring mechanism of boron phosphate in flame-retardant PUR–PIR foams

  • Xiu Liu
  • Jing-Yu Wang
  • Xiao-Mei Yang
  • Yi-Liang Wang
  • Jian-Wei Hao


The aim of this work was to investigate the catalysis of boron phosphate (BP) on the thermal stability and char forming in flame-retardant polyurethane–polyisocyanurate foams (FPUR–PIR) with dimethylmethylphosphonate (DMMP) and tris(2-chloropropyl) phosphate (TCPP). The flame-retardant performance and thermal stability of FPUR–PIR were evaluated by cone calorimetry (CONE), thermogravimetric analysis (TG) and microscale combustion calorimetry (MCC). Gas-phase products of FPUR–PIR during the thermal decomposition were investigated via thermogravimetric analyzer coupled with FTIR and mass spectrometry (TG–FTIR–MS). Elemental composition and content of the charred layer in detail were analyzed by X-ray photoelectron spectroscopy (XPS). It was observed that the incorporation of 3 mass% BP in FPUR–PIR decreases the heat release rate, total smoke released and CO production. Meanwhile, the addition of 3 mass% BP advances the release of gaseous products and lower the production of smoke and toxic products like –NCO compounds, PO* and cyanic acid in the gas phase. It can accelerate the dehydration of hydroxyl compounds and promote the char formation of –NCO compounds. This can improve the thermal and oxidation resistance of condensed phase. The catalytic behavior of the dehydration and char formation of BP in the thermal degradation of FPUR–PIR is attributed to Brønsted and Lewis acidic sites on BP.


Polyurethane–polyisocyanurate foams Flame-retardant Boron phosphate Catalysis 



The work was financially supported by National Natural Science Foundation of China (No. 21474008) and National Key R&D Program of China (No. 2016YFB0302104).


  1. 1.
    Ciecierska E, Jurczyk-Kowalska M, Bazarnik P, Kowalski M, Krauze S, Lewandowska M. The influence of carbon fillers on the thermal properties of polyurethane foam. J Therm Anal Calorim. 2016;123(1):283–91. doi: 10.1007/s10973-015-4940-2.CrossRefGoogle Scholar
  2. 2.
    Yang R, Hu W, Xu L, Song Y, Li J. Synthesis, mechanical properties and fire behaviors of rigid polyurethane foam with a reactive flame retardant containing phosphazene and phosphate. Polym Degrad Stabil. 2015;122:102–9. doi: 10.1016/j.polymdegradstab.2015.10.007.CrossRefGoogle Scholar
  3. 3.
    Liu X, Xu DM, Wang YL, Zhou Y, Hao JW. Smoke and toxicity suppression properties of ferrites on flame-retardant polyurethane–polyisocyanurate foams filled with phosphonate. J Therm Anal Calorim. 2016;. doi: 10.1007/s10973-016-5356-3.Google Scholar
  4. 4.
    Gaan S, Liang SY, Mispreuve H, Perler H, Naescher R, Neisius M. Flame retardant flexible polyurethane foams from novel DOPO-phosphonamidate additives. Polym Degrad Stabil. 2015;113:180–8. doi: 10.1016/j.polymdegradstab.2015.01.007.CrossRefGoogle Scholar
  5. 5.
    Liang S, Neisius M, Mispreuve H, Naescher R, Gaan S. Flame retardancy and thermal decomposition of flexible polyurethane foams: structural influence of organophosphorus compounds. Polym Degrad Stabil. 2012;97(11):2428–40. doi: 10.1016/j.polymdegradstab.2012.07.019.CrossRefGoogle Scholar
  6. 6.
    Jiao CM, Zhang CJ, Dong J, Chen XL, Qian Y, Li SX. Combustion behavior and thermal pyrolysis kinetics of flame-retardant epoxy composites based on organic-inorganic intumescent flame retardant. J Therm Anal Calorim. 2015;119(3):1759–67. doi: 10.1007/s10973-014-4379-x.CrossRefGoogle Scholar
  7. 7.
    Final Draft prEN 13501-1: Fire classification of construction products and building elements. Part 1: classification using test data from reaction to fire tests; 2007.Google Scholar
  8. 8.
    Liu X, Zhou Y, Hao JW, Du JX. Smoke and toxicity suppression by zinc salts in flame-retardant polyurethane–polyisocyanurate foams filled with phosphonate and chlorinated phosphate. J Appl Polym Sci. 2015;132(16):41846. doi: 10.1002/app.41846.CrossRefGoogle Scholar
  9. 9.
    Bellucci F, Camino G, Frache A, Saffa A. Catalytic charring-volatilization competition in organoclay nanocomposites. Polym Degrad Stabil. 2007;92(3):425–36. doi: 10.1016/j.polymdegradstab.2006.11.006.CrossRefGoogle Scholar
  10. 10.
    Zheng XR, Wang GJ, Xu W. Roles of organically-modified montmorillonite and phosphorous flame retardant during the combustion of rigid polyurethane foam. Polym Degrad Stabil. 2014;101:32–9. doi: 10.1016/j.polymdegradstab.2014.01.015.CrossRefGoogle Scholar
  11. 11.
    Holdsworth AF, Horrocks AR, Kandola BK, Price D. The potential of metal oxalates as novel flame retardants and synergists for engineering polymers. Polym Degrad Stabil. 2014;110:290–7. doi: 10.1016/j.polymdegradstab.2014.09.007.CrossRefGoogle Scholar
  12. 12.
    Lewin M, Endo M. Catalysis of intumescent flame retardancy of polypropylene by metallic compounds. Polym Adv Technol. 2003;14(1):3–11. doi: 10.1002/pat.265.CrossRefGoogle Scholar
  13. 13.
    Gallo E, Schartel B, Acierno D, Russo P. Flame retardant biocomposites: synergism between phosphinate and nanometric metal oxides. Eur Polym J. 2011;47(7):1390–401. doi: 10.1016/j.eurpolymj.2011.04.001.CrossRefGoogle Scholar
  14. 14.
    Gallo E, Braun U, Schartel B, Russo P, Acierno D. Halogen-free flame retarded poly(butylene terephthalate) (PBT) using metal oxides/PBT nanocomposites in combination with aluminium phosphinate. Polym Degrad Stabil. 2009;94(8):1245–53. doi: 10.1016/j.polymdegradstab.2009.04.014.CrossRefGoogle Scholar
  15. 15.
    Dogan M, Bayramli E. The flame retardant effect of aluminum phosphinate in combination with zinc borate, borophosphate, and nanoclay in polyamide-6. Fire Mater. 2014;38(1):92–9. doi: 10.1002/fam.2165.CrossRefGoogle Scholar
  16. 16.
    Weil ED, Patel NG. Iron compounds in non-halogen flame-retardant polyamide systems. Polym Degrad Stabil. 2003;82(2):291–6. doi: 10.1016/S0141-3910(03)00183-6.CrossRefGoogle Scholar
  17. 17.
    Liu X, Zhou Y, Peng H, Hao JW. Catalyzing charring effect of solid acid boron phosphate on dipentaerythritol during the thermal degradation and combustion. Polym Degrad Stabil. 2015;119:242–50. doi: 10.1016/j.polymdegradstab.2015.05.020.CrossRefGoogle Scholar
  18. 18.
    Zhou Y, Feng J, Peng H, Qu H, Hao J. Catalytic pyrolysis and flame retardancy of epoxy resins with solid acid boron phosphate. Polym Degrad Stabil. 2014;110:395–404. doi: 10.1016/j.polymdegradstab.2014.10.009.CrossRefGoogle Scholar
  19. 19.
    Liu X, Hao J, Gaan S. Recent studies on the decomposition and strategies of smoke and toxicity suppression for polyurethane based materials. RSC Adv. 2016;6(78):74742–56. doi: 10.1039/C6RA14345H.CrossRefGoogle Scholar
  20. 20.
    Lyon RE, Walters RN. Pyrolysis combustion flow calorimetry. J Anal Appl Pyrol. 2004;71(1):27–46. doi: 10.1016/S0165-2370(03)00096-2.CrossRefGoogle Scholar
  21. 21.
    Liu X, Salmeia KA, Rentsch D, Hao J, Gaan S. Thermal decomposition and flammability of rigid PU foams containing some DOPO derivatives and other phosphorus compounds. J Anal Appl Pyrol. 2017;124:219–29. doi: 10.1016/j.jaap.2017.02.003.CrossRefGoogle Scholar
  22. 22.
    Shi YQ, Yu B, Zhou KQ, Yuen RKK, Gui Z, Hu Y, et al. Novel CuCo2O4/graphitic carbon nitride nanohybrids: highly effective catalysts for reducing CO generation and fire hazards of thermoplastic polyurethane nanocomposites. J Hazard Mater. 2015;293:87–96. doi: 10.1016/j.jhazmat.2015.03.041.CrossRefGoogle Scholar
  23. 23.
    Bashirzadeh R, Gharehbaghi A. An investigation on reactivity, mechanical and fire properties of Pu flexible foam. J Cell Plast. 2010;46(2):129–58. doi: 10.1177/0021955x09350805.CrossRefGoogle Scholar
  24. 24.
    Cheng HF, Liu QF, Liu J, Sun B, Kang YX, Frost RL. TG–MS–FTIR (evolved gas analysis) of kaolinite-urea intercalation complex. J Therm Anal Calorim. 2014;116(1):195–203. doi: 10.1007/s10973-013-3383-x.CrossRefGoogle Scholar
  25. 25.
    Bozi J, Mihalyi MR, Blazso M. Study on temperature dependence of catalytic thermal decomposition of polyamides and polyurethanes mixed with acidic zeolites. J Anal Appl Pyrol. 2013;101:103–10. doi: 10.1016/j.jaap.2013.02.005.CrossRefGoogle Scholar
  26. 26.
    Varone JC. Cyanide poisoning: how much of a threat. Fire Eng. 2006;159(9):61–70.Google Scholar
  27. 27.
    Xu QW, Zhai HM, Wang GJ. Mechanism of smoke suppression by melamine in rigid polyurethane foam. Fire Mater. 2015;39(3):271–82. doi: 10.1002/fam.2249.CrossRefGoogle Scholar
  28. 28.
    Tsai KC, Kuan CF, Chen CH, Kuan HC, Hsu SW, Lee FM, et al. Study on thermal degradation and flame retardant property of halogen-free polypropylene composites using XPS and cone calorimeter. J Appl Polym Sci. 2013;127(2):1084–91. doi: 10.1002/app.37700.CrossRefGoogle Scholar
  29. 29.
    Chuang FS. Analysis of thermal degradation of diacetylene-containing polyurethane copolymers. Polym Degrad Stabil. 2007;92(7):1393–407. doi: 10.1016/j.polymdegradstab.2007.02.020.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Xiu Liu
    • 1
    • 2
  • Jing-Yu Wang
    • 1
  • Xiao-Mei Yang
    • 1
  • Yi-Liang Wang
    • 1
  • Jian-Wei Hao
    • 1
  1. 1.National Laboratory of Flame Retardant Materials, National Engineering and Technology Research Center of Flame Retardant Materials, School of Materials Science and EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.Beijing Aerospace Institute of Intelligence and InformationBeijingChina

Personalised recommendations