Skip to main content
Log in

Cone calorimeter analysis of flame retardant poly (methyl methacrylate)-silica nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nanocomposite is a promising method to reduce fire hazards of polymers. Specifically due to increased interfacial area between polymer and nanofillers, polymer nanocomposites have an advantage in reducing fire hazards efficiently even when the flame retardant additives are at a concentration of 5 mass% or less. In theory, crosslinking between the polymer chains can create a carbon-dense structure to enhance char formation, which can further promote the flame retardancy. However, little research has been done to explore the flammability of crosslinking polymer nanocomposites with a low concentration of nanosilica particles. In this study, crosslinked and non-crosslinked poly (methyl methacrylate) (PMMA) nanocomposites of a low concentration of nanosilica particles have been prepared via an in situ method. Their fire properties were tested by using the cone calorimeter at the heat flux of 50 kW m−2. Although silica-containing flame retardants tend to negatively affect the ignitability and soot production especially at a high concentration, through the condensed phase mechanism, the samples of high loading rate of nanosilica particles show better fire retardancy performance in the aspect of flammability, including decreased heat release rate, mass loss rate, and total heat release. Additionally, crosslinking indeed attributes to the less intensive combustion of crosslinked PMMA samples, especially at a low concentration of nanosilica. The combination of nanosilica particles with the modification of the internal structure of the polymer nanocomposites might be a good strategy to improve fire retardancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Patel RJ, Wang Q. Prediction of properties and modeling of fire behavior of polyethylene using cone calorimeter. J Loss Prev Process. 2016;41:411–18.

    Article  Google Scholar 

  2. Visakh PM, Arao Y. Flame retardants: polymer blends. Composites and nanocomposites. New York: Springer; 2015.

    Book  Google Scholar 

  3. Mngomezulu ME, John MJ, Jacobs V, Luyt AS. Review on flammability of biofibres and biocomposites. Carbohydr Polym. 2014;111:149–82.

    Article  CAS  Google Scholar 

  4. Morgan AB, Gilman JW. An overview of flame retardancy of polymeric materials: application, technology, and future directions. Fire Mater. 2013;37:259–79.

    Article  CAS  Google Scholar 

  5. Betts KS. New thinking on flame retardants. Environ Health Perspect. 2008;116:A210–3.

    Article  Google Scholar 

  6. Wang Q. Polymer nanocomposite: a promising flame retardant. J Mater Sci Nanotechnol. 2013;1(2):e202.

    Google Scholar 

  7. Zhao Z, Gou J, Bietto S, Ibeh C, Hui D. Fire retardancy of clay/carbon nanofiber hybrid sheet in fiber reinforced polymer composites. Compos Sci Technol. 2009;69:2081–7.

    Article  CAS  Google Scholar 

  8. Pandey P, Anbudayanidhi S, Mohanty S, Nayak SK. Flammability and thermal characterization of PMMA/clay nanocomposites and thermal kinetics analysis. Polym Compos. 2012;33(11):2058–71.

    Article  CAS  Google Scholar 

  9. Lu SY, Hamerton I. Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci. 2002;27:1661–712.

    Article  CAS  Google Scholar 

  10. Iji M, Serizawa S. Silicone derivatives as new flame retardants for aromatic thermoplastics used in electronic devices. Polym Adv Technol. 1998;9(10–11):593–600.

    Article  CAS  Google Scholar 

  11. Kashiwagi T, Gilman JW, Butler KM, Harris RH, Shields JR, Asano A. Flame retardant mechanism of silica gel/silica. Fire Mater. 2000;24:277–89.

    Article  CAS  Google Scholar 

  12. Nie S, Peng C, Yuan S, Zhang M. Thermal and flame retardant properties of novel intumescent flame retardant polypropylene composites. J Therm Anal Calorim. 2013;113(2):865–71.

    Article  CAS  Google Scholar 

  13. Zhang S, Horrocks AR. A review of flame retardant polypropylene fibres. Prog Polym Sci. 2003;28(11):1517–38.

    Article  CAS  Google Scholar 

  14. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R. 2000;28(1–2):1–63.

    Article  Google Scholar 

  15. Kashiwagi T, Morgan AB, Antonucci JM, VanLandingham MR, Harris RH, Awad WH, Shields JR. Thermal and flammability properties of a silica–poly (methylmethacrylate) nanocomposite. J Appl Polym Sci. 2003;89(8):2072–8.

    Article  CAS  Google Scholar 

  16. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois P. New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng R. 2009;63(3):100–25.

    Article  Google Scholar 

  17. Bourbigot S, Le Bras. Plastics flammability handbook—principles, regulations, testing, and approval. 3rd ed. 2004; 133–172.

  18. Babrauskas V, Peacock RD. Heat release rate: the single most important variable in fire hazard. Fire Safety J. 1992;18(3):255–72.

    Article  CAS  Google Scholar 

  19. Sander S. Polymer synthesis. 2nd ed. New York: Academic; 1991.

    Google Scholar 

  20. Lindholm J, Brink A, Hupa M. Cone calorimeter–a tool for measuring heat release rate. Turku: Åbo Akademi Process Chemistry Centre; 2009.

    Google Scholar 

  21. Morgan AB, Bundy M. Cone calorimeter analysis of UL-94V-rated plastics. Fire Mater. 2007;31:257–83.

    Article  CAS  Google Scholar 

  22. Schartel B, Hull TR. Development of fire retarded materials—interpretation of cone calorimeter data. Fire Mater. 2007;31(5):327–54.

    Article  CAS  Google Scholar 

  23. Morgan AB, Gilman JW. An overview of flame retardancy of polymeric materials: application, technology, and future directions. Fire Mater. 2013;37(4):259–79.

    Article  CAS  Google Scholar 

  24. Zhu J, Uhl FM, Morgan AB, Wilkie CA. Studies on the mechanism by which the formation of nanocomposites enhances thermal stability. Chem Mater. 2001;13(12):4649–54.

    Article  CAS  Google Scholar 

  25. Gilman JW, Jackson CL, Morgan AB, Harris R, Manias E, Giannelis EP, Wuthenow M, Hilton D, Phillips SH. Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem Mater. 2000;12(7):1866–73.

    Article  CAS  Google Scholar 

  26. Gilman JW, Harris RH, Shields JR, Kashiwagi T, Morgan AB. A study of the flammability reduction mechanism of polystyrene-layered silicate nanocomposite: layered silicate reinforced carbonaceous char. Polym Adv Technol. 2006;17(4):263–71.

    Article  CAS  Google Scholar 

  27. NFPA 272. Standard method of test for heat and visible smoke release rates for upholstered furniture components or composites and mattresses using an oxygen consumption calorimeter. 2003.

  28. Quintiere J. Fundamentals of fire phenomena. New York: Wiley; 2006.

    Book  Google Scholar 

  29. Cullis CF, Hirschler MM. The combustion of organic polymers. Oxford: Oxford Science Publications; 1981.

    Google Scholar 

  30. Jash P, Wilkie CA. Effects of surfactants on the thermal and fire properties of poly (methyl methacrylate)/clay nanocomposites. Polym Degrad Stabil. 2005;88(3):401–6.

    Article  CAS  Google Scholar 

  31. Mouritz AP, Mathys Z, Gibson AG. Heat release of polymer composites in fire. Compos Part A Appl Sci Manuf. 2006;37(7):1040–54.

    Article  Google Scholar 

  32. Huggett C. Estimation of rate of heat release by means of oxygen consumption measurements. Fire Mater. 1980;4(2):61–5.

    Article  CAS  Google Scholar 

  33. Mouritz AP, Gibson AG. Fire properties of polymer composite materials. New York: Springer Science & Business Media; 2006.

    Google Scholar 

  34. Morgan AB, Wilkie CA, editors. Flame retardant polymer nanocomposites. New York: Wiley; 2007.

    Google Scholar 

  35. Wang D, Echols K, Wilkie CA. Cone calorimetric and thermogravimetric analysis evaluation of halogen-containing polymer nanocomposites. Fire Mater. 2005;29:283–94.

    Article  CAS  Google Scholar 

  36. Hurley MJ, Gottuk DT, Hall JR Jr, Harada K, Kuligowski ED, Puchovsky M, Watts JM Jr, Wieczorek CJ, editors. SFPE Handbook of fire protection engineering. New York: Springer; 2015.

    Google Scholar 

  37. Myllymäki J, Baroudi D. Prediction of smoke production and heat release by convolution model. Espoo 1998; Technical Research Centre of Finland, VTT research notes 1959. 29 p. NT Project No. 1297–96.

  38. Mouhammad B, Jean-Michel S, Catherine B, Jean-Pierre V, Vadim K, François-Xavier R. Smoke data determination for various types of fuel. Fire Saf J. 1998;30(3):293–306.

    Article  Google Scholar 

  39. Petrella RV. The assessment of full-scale fire hazards from cone calorimeter data. J Fire Sci. 1994;12:14–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research project was sponsored by the National Science Foundation (NSF) under CBET-1336254 and CBET-1336162. Authors are also grateful for the financial support from the Dale F. Janes Endowed Professorship at Oklahoma State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsheng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, R., Hatanaka, L.C., Ahmed, L. et al. Cone calorimeter analysis of flame retardant poly (methyl methacrylate)-silica nanocomposites. J Therm Anal Calorim 128, 1443–1451 (2017). https://doi.org/10.1007/s10973-016-6070-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-6070-x

Keywords

Navigation