Journal of Thermal Analysis and Calorimetry

, Volume 127, Issue 2, pp 1553–1565 | Cite as

Thermal decomposition and biological activity of two supramolecular hybrid nitrates templated by piperazine

  • Dhouha Ben Hassan
  • Walid Rekik
  • Fedia Ben Mefteh
  • Houcine Naïli


The combination between piperazine, nitrate anions and nickel/zinc metals provided two new hybrid compounds with the general formula (C4H12N2)2[MII(H2O)6](NO3)6 [MII: Ni (1) and Zn (2)]. Their characterization is performed through FTIR spectroscopy and single-crystal X-ray diffraction which gives, as a result, isotype crystal structures, according to the triclinic system (space group Pī), built from: isolated metallic cations coordinated by six water molecules in a distorted octahedral environment [MII(H2O)6]2+, free nitrate anions and protonated piperazine related together through a hydrogen bond network. These bonds together with other attractive forces, being responsible for the crystal formation, were examined using density-functional theory electron density and the non-covalent interaction plot technique. The thermal behavior of the two materials, studied by thermogravimetric analysis and thermal-dependent X-ray diffraction analysis, starts with the dehydration step proceeding differently according to the used metal. The total decomposition leads to the formation of metal oxides: NiO and ZnO. In order to evaluate their biological activity, the two hybrids have been screened against bacteria and fungi and the findings have been reported and explained.

Graphical Abstract


Hybrid nitrate Hydrogen bond network Non-covalent interactions Thermal behavior Biological activity 



Special thanks are expressed to Pr. Alberto Otero-de-la-Roza (National Institute for Nanotechnology, National Research Council of Canada) for the contribution in the NCI calculations. AOR thanks the Spanish Malta/Consolider initiative (No. CSD2007-00045) and Dr. Thierry Bataille (Ecole Nationale Supérieure de Chimie de Rennes, France) for the assistance in the TDXD measurements. AOR acknowledges Dr. Thierry Roisnel (Centre de diffractométrie X CDIFX, Institue des sciences chimiques de Rennes (ISCR), université de Rennes 1, France) for supplying single-crystal data collection.

Supplementary material

10973_2016_6056_MOESM1_ESM.pdf (126 kb)
Supplementary material 1 (PDF 126 kb)
10973_2016_6056_MOESM2_ESM.pdf (131 kb)
Supplementary material 2 (PDF 131 kb)
10973_2016_6056_MOESM3_ESM.cif (14 kb)
Supplementary material 3 (CIF 13 kb)
10973_2016_6056_MOESM4_ESM.cif (14 kb)
Supplementary material 4 (CIF 14 kb)


  1. 1.
    Parthasarathi R, Subramanian V, Sathyamurthy N. Hydrogen bonding without borders: an atoms-in-molecules perspective. J Phys Chem A. 2006;110:3349–51.CrossRefGoogle Scholar
  2. 2.
    Jeffrey GA. An introduction to hydrogen bonding. Oxford: Oxford University Press; 1997.Google Scholar
  3. 3.
    Janiak C. A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. J Chem Soc Dalton Trans. 2000. doi: 10.1039/B003010O.Google Scholar
  4. 4.
    Grimme S, Antony J, Schwabe T, Muck-Lichtenfeld C. Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules. Org Biomol Chem. 2007;5:741–58.CrossRefGoogle Scholar
  5. 5.
    Takahashi H, Tsuboyama S, Umezawa Y, Honda K, Nishio M. CH/π interactions as demonstrated in the crystal structure of host/guest compounds. A Database Study. Tetrahedron. 2000;56:6185–91.CrossRefGoogle Scholar
  6. 6.
    Nishio M. CH/π hydrogen bonds in crystals. Cryst Eng Commun. 2004;6:130–58.CrossRefGoogle Scholar
  7. 7.
    Ma JC, Dougherty DA. The cation–π interaction. Chem Rev. 1997;97:1303–24.CrossRefGoogle Scholar
  8. 8.
    Schneider HJ. Binding mechanisms in supramolecular complexes. Angew Chem Int Ed. 2009;48:3924–77.CrossRefGoogle Scholar
  9. 9.
    Braga D, Crepioni F, Desiraju GR. Crystal engineering and organometallic architecture. Chem Rev. 1998;98:1375–406.CrossRefGoogle Scholar
  10. 10.
    Stang P, Cao DH, Saito S, Arif AM. Self-assembly of cationic, tetranuclear, Pt(II) and Pd(II) macrocyclic squares. X-ray crystal structure of [Pt2 + (dppp)(4,4′-bipyridyl).cntdot.2-OSO2CF3]4. J Am Chem Soc. 1995;117:6273–83.CrossRefGoogle Scholar
  11. 11.
    Steed J, Atwood JL. Supramolecular chemistry. New York: Wiley; 2001.Google Scholar
  12. 12.
    Janiak C. Engineering coordination polymers towards applications. Dalton Trans. 2003. doi: 10.1039/B305705B.Google Scholar
  13. 13.
    Eddaoudi M, Moler DB, Li HL, Chen BL, Reineke TN, O’Keeffe M, Yaghi OM. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc Chem Res. 2001;34:319–30.CrossRefGoogle Scholar
  14. 14.
    Zhou XH, Peng YH, Du XD, Zuo JL, You XZ. Hydrothermal syntheses and structures of three novel coordination polymers assembled from 1,2,3-triazolate ligands. CrystEngComm. 2009;11:1964–70.CrossRefGoogle Scholar
  15. 15.
    Burchell TJ, Puddephatt RJ. Self-assembly of chiral coordination polymers and macrocycles: a metal template effect on the polymer-macrocycle equilibrium. Inorg Chem. 2005;44:3718–30.CrossRefGoogle Scholar
  16. 16.
    Desiraju GR. Supramolecular Synthons in crystal engineering—a new organic synthesis. Angew Chem Int Ed Engl. 1995;34:2311–27.CrossRefGoogle Scholar
  17. 17.
    Hollingsworth MD. Crystal engineering: from structure to function. Science. 2002;295:2410–3.Google Scholar
  18. 18.
    Trask AV, Motherwell WDS, Jones W. Pharmaceutical cocrystallization: engineering a remedy for caffeine hydration. Cryst Growth Des. 2005;5:1013–21.CrossRefGoogle Scholar
  19. 19.
    Desiraju GR. Crystal engineering: a holistic view. Angew Chem Int Ed. 2007;46:8342–56.CrossRefGoogle Scholar
  20. 20.
    Davis AV, Yeh RM, Raymond KN. Supramolecular assembly dynamics. Proc Natl Acad Sci USA. 2002;99:4793–6.CrossRefGoogle Scholar
  21. 21.
    Li L-L, Lin K-J, Ho C-J, Sun C-P, Yang H-D. A coordination π–π framework exhibits spontaneous magnetization. Chem Commun. 2006. doi: 10.1039/B515681E.Google Scholar
  22. 22.
    Desiraju GR. Crystal engineering: from molecule to crystal. J Am Chem Soc. 2013;135:9952–67.CrossRefGoogle Scholar
  23. 23.
    Beobiden G, Castillo O, Cepeda J, Luque A, Pérez-Yáñez S, Román P, Thomas-Gipson J. Metal–carboxylato–nucleobase systems: from supramolecular assemblies to 3D porous materials. Coord Chem Rev. 2013;257:2716–36.CrossRefGoogle Scholar
  24. 24.
    Steed JW, Atwood JL. Supramolecular chemistry. New York: Wiley; 2000.Google Scholar
  25. 25.
    Desiraju GR. Hydration in organic crystals: prediction from molecular structure. J Chem Soc Chem Commun. 1991. doi: 10.1039/C39910000426.Google Scholar
  26. 26.
    Infantes L, Motherwell S. Water clusters in organic molecular crystals. CrystEngComm. 2002;4:454–61.CrossRefGoogle Scholar
  27. 27.
    Mustapha A, Duckmanton P, Reglinski J, Kennedy AR. N-donor ligand complexes of nickel, zinc and copper: comparisons with tetradentate N-donor ligands derived from Schiff bases. Polyhedron. 2010;29:2590–4.CrossRefGoogle Scholar
  28. 28.
    Padhi SK, Manivannan V. Synthesis, structure and properties of [ML(NO3)2]: M = Co, Ni, Cu; L = N-(2-pyridylethyl)pyridine-2-carbaldimine. Polyhedron. 2007;26:1619–24.CrossRefGoogle Scholar
  29. 29.
    Tyagi M, Chandra S, Tyagi P. Mn(II) and Cu(II) complexes of a bidentate Schiff’s base ligand: spectral, thermal, molecular modelling and mycological studies. Spectrochim Acta Part A. 2014;117:1–8.CrossRefGoogle Scholar
  30. 30.
    Turel I, Bukovec N, Goodgame M, Williams DJ. Synthesis and characterization of copper(II) coordination compounds with acyclovir: crystal structure of triaquabis [9-{(2-hydroxyethoxy)methyl > guanine] copper(II) nitrate(V) hydrate. Polyhedron. 1997;16:1701–6.CrossRefGoogle Scholar
  31. 31.
    Wu D, Zhao Y, Ye H, Wu G. Bis[4-chloro-N′-(2-pyridylmethylidene)benzohydrazidato]cobalt(III) nitrate sesquihydrate. Acta Cryst E. 2010;66:m1568–9.CrossRefGoogle Scholar
  32. 32.
    Deng W-T, Liu J-C, Cao J. Syntheses, crystal structures and properties of four new coordination polymers involving a schiff base ligand bearing an easily abstracted proton in the hydrazone backbone. Inorg Chem Commun. 2013;35:315–7.CrossRefGoogle Scholar
  33. 33.
    Liu CQ, Shi J-M, Wu C-J. Crystal structure of nitratodi(1,3-propanediamine)cobalt(II) mononitrate monohydrate, [Co(C3H10N2)2(NO3)]NO3···H2O. Z Kristallogr NCS. 2003;218:297–8.Google Scholar
  34. 34.
    Glasovaca Z, Štrukil V, Eckert-Maksić M, Schröder D, Schlangenc M, Schwarz H. Coordination chemistry of nickel(II) nitrate with superbasic guanidines as studied by electrospray mass spectrometry. Int J Mass Spectrom. 2010;290:22–31.CrossRefGoogle Scholar
  35. 35.
    Bruker-Nonius. SAINT version 7.23A. Madison: Bruker AXS Inc.; 2005.Google Scholar
  36. 36.
    Sheldrick GM. SADABS. Madison: Bruker AXS Inc.; 2002.Google Scholar
  37. 37.
    Sheldrick GM. A short history of SHELX. Acta Crystallogr. 2008;64:112–22.CrossRefGoogle Scholar
  38. 38.
    Farrugia LJ. WinGX suite for small-molecule single-crystal crystallography. J App Crystallogr. 1999;32:837–8.CrossRefGoogle Scholar
  39. 39.
    Giannozzi P, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter. 2009;21:395502–21.CrossRefGoogle Scholar
  40. 40.
    Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–8.CrossRefGoogle Scholar
  41. 41.
    Johnson ER, Keinan S, Mori-Sanchez P, Contreras-García J, Cohen AJ, Yang WJ. Revealing noncovalent interactions. J Am Chem Soc. 2010;132:6498–506.CrossRefGoogle Scholar
  42. 42.
    Otero-de-la Roza A, Johnson ER, Contreras-Garcia J. Revealing non-covalent interactions in solids: NCI plots revisited. Phys Chem Chem Phys. 2012;14:12165–72.CrossRefGoogle Scholar
  43. 43.
    Otero-de-la Roza A, Blanco MA, Pendãs AM, Luaña V. Critic: a new program for the topological analysis of solid-state electron densities. Comput Phys Commun. 2009;180:157–66.CrossRefGoogle Scholar
  44. 44.
    Otero-de-la Roza A, Johnson ER, Luaà V. Critic2: a program for real-space analysis of quantum chemical interactions in solids. Comput Phys Commun. 2014;185:1007–18.CrossRefGoogle Scholar
  45. 45.
    Saha CR. Silver(I) and silver(III) complexes of biguanides and N′-amidinoisoureas. J Inorg Nucl Chem. 1976;38:1635–40.CrossRefGoogle Scholar
  46. 46.
    Prabavathi N, Nilufer A, Krishnakumar V. FT-IR, FT-Raman and DFT quantum chemical study on the molecular conformation, vibrational and electronic transitions of 1-(m-(trifluoromethyl)phenyl)piperazine. Spectrochim Acta Part A Mol Biomol Spectrosc. 2014;121:483–93.CrossRefGoogle Scholar
  47. 47.
    Tasal E, Kumalar M. Structure and vibrational spectra of 6-(4-fluorobenzoyl)-3-(2-(4-methylpiperazin-1-yl)-2-oxoethyl)benzo[d]thiazol-2(3H)-one molecule. Spectrochim Acta. 2012;96:548–62.CrossRefGoogle Scholar
  48. 48.
    Addison CC, Gatehouse BM. The infrared spectra of anhydrous transition-metal nitrates. J Chem Soc. 1960. doi: 10.1039/JR9600000613.Google Scholar
  49. 49.
    Gatehouse BM, Livingstone SE, Nyholm RS. Infrared spectra of some nitrato-co-ordination complexes. J Chem Soc. 1957. doi: 10.1039/JR9570004222.Google Scholar
  50. 50.
    Temel H, Ilhan S, Sekerci M, Ziyadanogŭlları R. The synthesis and spectral characterization of new Cu(II), Ni(II), Co(III), and Zn(II) complexes with schiff base. Spectrosc Lett. 2002;35:219–28.CrossRefGoogle Scholar
  51. 51.
    Ilhan S, Temel H, Kılıc A, Tas E. Synthesis and spectral characterization of macrocyclic NiII complexes derived from various diamines, NiII perchlorate and 1,4-bis(2-carboxyaldehydephenoxy)butane. Transit Met Chem. 2007;32:1012–7.CrossRefGoogle Scholar
  52. 52.
    Nakamoto K. Infrared raman spectra inorganic and coordination compounds, part B, 5th edn. New York: Wiley; 1998.Google Scholar
  53. 53.
    Nkhili NL, Rekik W, Naïli H, Mhiri T, Bataille T. Piperazinediium diselenatohexaaquacobaltate(II) dihydrate (C4H12N2)[Co(SeO4)2(H2O)4]·2H2O. Solid State Phenom. 2013;194:171–4.CrossRefGoogle Scholar
  54. 54.
    Rekik W, Naïli H, Bataille T, Roisnel T, Mhiri T. Supramolecular networks of transition metal sulfates templated by piperazine. Inorg Chim Acta. 2006;359:3954–62.CrossRefGoogle Scholar
  55. 55.
    Rekik W, Naïli H, Mhiri T, Bataille T. Piperazinediium hexaaquazinc(II) bis(sulfate): a structural analogue of Tutton’s salts. Acta Cryst. 2005;E61:m629–31.Google Scholar
  56. 56.
    Pan J-X, Yang G-Y, Sun Y-Q. Piperazinium hexaaquacobalt(II) disulfate. Acta Cryst. 2003;E59:m286–8.Google Scholar
  57. 57.
    Wu D, Zhao Y, Ye H, Wu G. Bis[4-chloro-N′-(2-pyridylmethylidene)-benzohydrazidato]cobalt(III) nitrate sesquihydrate. Acta Cryst. 2010;E66:m1568–9.Google Scholar
  58. 58.
    Guo G-Q, Deng J-H, Chen J. Aqua(hippurato)bis(1,10-phenanthroline)cobalt(II) nitrate monohydrate. Acta Cryst. 2010;E66:m1415–6.Google Scholar
  59. 59.
    Rosu T, Pahontu E, Reka-Stefana M, Ilies D-C, Georgescu R, Shova S, Gulea A. Synthesis, structural and spectral studies of Cu(II) and V(IV) complexes of a novel Schiff base derived from pyridoxal. Antimicrobial activity. Polyhedron. 2012;31:352–60.CrossRefGoogle Scholar
  60. 60.
    Ilhan S, Temel H. Synthesis and spectral studies of macrocyclic Cu(II), Ni(II) and Co(II) complexes by template reaction of 1,4-bis(3-aminopropoxy)butane with metal(II) nitrate and salicylaldehyde derivatives. J Mol Struct. 2008;891:157–66.CrossRefGoogle Scholar
  61. 61.
    Brown ID. On the geometry of O–H···O hydrogen bonds. Acta Cryst. 1976;A32:24–31.CrossRefGoogle Scholar
  62. 62.
    Blessing RH. Hydrogen bonding and thermal vibrations in crystalline phosphate salts of histidine and imidazole. Acta Cryst. 1986;B42:613–21.CrossRefGoogle Scholar
  63. 63.
    Hajlaoui F, Naïli H, Yahyaoui S, Turnbull MM, Mhiri T, Bataille T. Synthesis, characterization and magnetic properties of four new organically templated metal sulfates [C5H14N2][MII(H2O)6](SO4)2, (MII = Mn, Fe Co, Ni). J Chem Soc Dalton Trans. 2011;40:11613–20.CrossRefGoogle Scholar
  64. 64.
    Nkhili NL, Rekik W, Mhiri T, Mahmudov KT, Kopylovich MN, Naïli H. Double piperazinediium and 1,4-diazabicyclo[2.2.2]octanediium MII selenates (MII = CoII, NiII, CuII, ZnII) as effective catalysts for Henry reaction. Inorg Chim Acta. 2014;412:27–31.CrossRefGoogle Scholar
  65. 65.
    Kammoun O, Loulou N, Rekik W, Naïli H, Mhiri T, Bataille T. Synthesis, crystal structure and characterization of a new dabcodiium hexaaquacobalt(II) bis(selenate), (C6H14N2)[Co(H2O)6](SeO4)2. J Chem Crystallogr. 2012;42:103–10.CrossRefGoogle Scholar
  66. 66.
    Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN, Yang W. NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput. 2011;7:625–32.CrossRefGoogle Scholar
  67. 67.
    Yang J, Waller MP. Revealing noncovalent interactions in quantum crystallography: taurine revisited. J Comput Chem. 2013;34:466–70.CrossRefGoogle Scholar
  68. 68.
    Badri Z, Bouzkova K, Foroutan-Nejad C, Marek R. Origin of the thermodynamic stability of the polymorph IV of crystalline barbituric acid: evidence from solid-state NMR and electron density analyses. Cryst Growth Des. 2014;14:2763–72.CrossRefGoogle Scholar
  69. 69.
    Dale SG, Otero-de-la-Roza A, Johnson ER. Density-functional description of electrides. Phys Chem Chem Phys. 2014;16:14584–93.CrossRefGoogle Scholar
  70. 70.
    Fugu MB, Ndahi NP, Paul BB, Mustapha AN. Synthesis, characterization, and antimicrobial studies of some vanillin Schiff base metal (II) complexes. J Chem Pharm Res. 2013;5:22–8.Google Scholar
  71. 71.
    Hanif M, Chohan ZH. Synthesis, spectral characterization and biological studies of transition metal(II) complexes with triazole Schiff bases. Appl Organomet Chem. 2013;27:36–44.CrossRefGoogle Scholar
  72. 72.
    Koch AL. Bacterial wall as target for attack: past, present, and future research. Clin Microbiol Rev. 2003;16:673–87.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Dhouha Ben Hassan
    • 1
  • Walid Rekik
    • 1
  • Fedia Ben Mefteh
    • 2
  • Houcine Naïli
    • 1
  1. 1.Laboratoire Physico-chimie de l’État Solide, Département de Chimie, Faculté des Sciences de SfaxUniversité de SfaxSfaxTunisia
  2. 2.Laboratory of Plant Biotechnology, Faculty of SciencesUniversity of SfaxSfaxTunisia

Personalised recommendations