Skip to main content
Log in

Thermal decomposition and biological activity of two supramolecular hybrid nitrates templated by piperazine

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The combination between piperazine, nitrate anions and nickel/zinc metals provided two new hybrid compounds with the general formula (C4H12N2)2[MII(H2O)6](NO3)6 [MII: Ni (1) and Zn (2)]. Their characterization is performed through FTIR spectroscopy and single-crystal X-ray diffraction which gives, as a result, isotype crystal structures, according to the triclinic system (space group Pī), built from: isolated metallic cations coordinated by six water molecules in a distorted octahedral environment [MII(H2O)6]2+, free nitrate anions and protonated piperazine related together through a hydrogen bond network. These bonds together with other attractive forces, being responsible for the crystal formation, were examined using density-functional theory electron density and the non-covalent interaction plot technique. The thermal behavior of the two materials, studied by thermogravimetric analysis and thermal-dependent X-ray diffraction analysis, starts with the dehydration step proceeding differently according to the used metal. The total decomposition leads to the formation of metal oxides: NiO and ZnO. In order to evaluate their biological activity, the two hybrids have been screened against bacteria and fungi and the findings have been reported and explained.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Parthasarathi R, Subramanian V, Sathyamurthy N. Hydrogen bonding without borders: an atoms-in-molecules perspective. J Phys Chem A. 2006;110:3349–51.

    Article  CAS  Google Scholar 

  2. Jeffrey GA. An introduction to hydrogen bonding. Oxford: Oxford University Press; 1997.

    Google Scholar 

  3. Janiak C. A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. J Chem Soc Dalton Trans. 2000. doi:10.1039/B003010O.

    Google Scholar 

  4. Grimme S, Antony J, Schwabe T, Muck-Lichtenfeld C. Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules. Org Biomol Chem. 2007;5:741–58.

    Article  CAS  Google Scholar 

  5. Takahashi H, Tsuboyama S, Umezawa Y, Honda K, Nishio M. CH/π interactions as demonstrated in the crystal structure of host/guest compounds. A Database Study. Tetrahedron. 2000;56:6185–91.

    Article  CAS  Google Scholar 

  6. Nishio M. CH/π hydrogen bonds in crystals. Cryst Eng Commun. 2004;6:130–58.

    Article  CAS  Google Scholar 

  7. Ma JC, Dougherty DA. The cation–π interaction. Chem Rev. 1997;97:1303–24.

    Article  CAS  Google Scholar 

  8. Schneider HJ. Binding mechanisms in supramolecular complexes. Angew Chem Int Ed. 2009;48:3924–77.

    Article  CAS  Google Scholar 

  9. Braga D, Crepioni F, Desiraju GR. Crystal engineering and organometallic architecture. Chem Rev. 1998;98:1375–406.

    Article  CAS  Google Scholar 

  10. Stang P, Cao DH, Saito S, Arif AM. Self-assembly of cationic, tetranuclear, Pt(II) and Pd(II) macrocyclic squares. X-ray crystal structure of [Pt2 + (dppp)(4,4′-bipyridyl).cntdot.2-OSO2CF3]4. J Am Chem Soc. 1995;117:6273–83.

    Article  CAS  Google Scholar 

  11. Steed J, Atwood JL. Supramolecular chemistry. New York: Wiley; 2001.

    Google Scholar 

  12. Janiak C. Engineering coordination polymers towards applications. Dalton Trans. 2003. doi:10.1039/B305705B.

    Google Scholar 

  13. Eddaoudi M, Moler DB, Li HL, Chen BL, Reineke TN, O’Keeffe M, Yaghi OM. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc Chem Res. 2001;34:319–30.

    Article  CAS  Google Scholar 

  14. Zhou XH, Peng YH, Du XD, Zuo JL, You XZ. Hydrothermal syntheses and structures of three novel coordination polymers assembled from 1,2,3-triazolate ligands. CrystEngComm. 2009;11:1964–70.

    Article  CAS  Google Scholar 

  15. Burchell TJ, Puddephatt RJ. Self-assembly of chiral coordination polymers and macrocycles: a metal template effect on the polymer-macrocycle equilibrium. Inorg Chem. 2005;44:3718–30.

    Article  CAS  Google Scholar 

  16. Desiraju GR. Supramolecular Synthons in crystal engineering—a new organic synthesis. Angew Chem Int Ed Engl. 1995;34:2311–27.

    Article  CAS  Google Scholar 

  17. Hollingsworth MD. Crystal engineering: from structure to function. Science. 2002;295:2410–3.

    CAS  Google Scholar 

  18. Trask AV, Motherwell WDS, Jones W. Pharmaceutical cocrystallization: engineering a remedy for caffeine hydration. Cryst Growth Des. 2005;5:1013–21.

    Article  CAS  Google Scholar 

  19. Desiraju GR. Crystal engineering: a holistic view. Angew Chem Int Ed. 2007;46:8342–56.

    Article  CAS  Google Scholar 

  20. Davis AV, Yeh RM, Raymond KN. Supramolecular assembly dynamics. Proc Natl Acad Sci USA. 2002;99:4793–6.

    Article  CAS  Google Scholar 

  21. Li L-L, Lin K-J, Ho C-J, Sun C-P, Yang H-D. A coordination π–π framework exhibits spontaneous magnetization. Chem Commun. 2006. doi:10.1039/B515681E.

    Google Scholar 

  22. Desiraju GR. Crystal engineering: from molecule to crystal. J Am Chem Soc. 2013;135:9952–67.

    Article  CAS  Google Scholar 

  23. Beobiden G, Castillo O, Cepeda J, Luque A, Pérez-Yáñez S, Román P, Thomas-Gipson J. Metal–carboxylato–nucleobase systems: from supramolecular assemblies to 3D porous materials. Coord Chem Rev. 2013;257:2716–36.

    Article  Google Scholar 

  24. Steed JW, Atwood JL. Supramolecular chemistry. New York: Wiley; 2000.

    Google Scholar 

  25. Desiraju GR. Hydration in organic crystals: prediction from molecular structure. J Chem Soc Chem Commun. 1991. doi:10.1039/C39910000426.

    Google Scholar 

  26. Infantes L, Motherwell S. Water clusters in organic molecular crystals. CrystEngComm. 2002;4:454–61.

    Article  CAS  Google Scholar 

  27. Mustapha A, Duckmanton P, Reglinski J, Kennedy AR. N-donor ligand complexes of nickel, zinc and copper: comparisons with tetradentate N-donor ligands derived from Schiff bases. Polyhedron. 2010;29:2590–4.

    Article  CAS  Google Scholar 

  28. Padhi SK, Manivannan V. Synthesis, structure and properties of [ML(NO3)2]: M = Co, Ni, Cu; L = N-(2-pyridylethyl)pyridine-2-carbaldimine. Polyhedron. 2007;26:1619–24.

    Article  CAS  Google Scholar 

  29. Tyagi M, Chandra S, Tyagi P. Mn(II) and Cu(II) complexes of a bidentate Schiff’s base ligand: spectral, thermal, molecular modelling and mycological studies. Spectrochim Acta Part A. 2014;117:1–8.

    Article  CAS  Google Scholar 

  30. Turel I, Bukovec N, Goodgame M, Williams DJ. Synthesis and characterization of copper(II) coordination compounds with acyclovir: crystal structure of triaquabis [9-{(2-hydroxyethoxy)methyl > guanine] copper(II) nitrate(V) hydrate. Polyhedron. 1997;16:1701–6.

    Article  CAS  Google Scholar 

  31. Wu D, Zhao Y, Ye H, Wu G. Bis[4-chloro-N′-(2-pyridylmethylidene)benzohydrazidato]cobalt(III) nitrate sesquihydrate. Acta Cryst E. 2010;66:m1568–9.

    Article  CAS  Google Scholar 

  32. Deng W-T, Liu J-C, Cao J. Syntheses, crystal structures and properties of four new coordination polymers involving a schiff base ligand bearing an easily abstracted proton in the hydrazone backbone. Inorg Chem Commun. 2013;35:315–7.

    Article  CAS  Google Scholar 

  33. Liu CQ, Shi J-M, Wu C-J. Crystal structure of nitratodi(1,3-propanediamine)cobalt(II) mononitrate monohydrate, [Co(C3H10N2)2(NO3)]NO3···H2O. Z Kristallogr NCS. 2003;218:297–8.

    CAS  Google Scholar 

  34. Glasovaca Z, Štrukil V, Eckert-Maksić M, Schröder D, Schlangenc M, Schwarz H. Coordination chemistry of nickel(II) nitrate with superbasic guanidines as studied by electrospray mass spectrometry. Int J Mass Spectrom. 2010;290:22–31.

    Article  Google Scholar 

  35. Bruker-Nonius. SAINT version 7.23A. Madison: Bruker AXS Inc.; 2005.

    Google Scholar 

  36. Sheldrick GM. SADABS. Madison: Bruker AXS Inc.; 2002.

    Google Scholar 

  37. Sheldrick GM. A short history of SHELX. Acta Crystallogr. 2008;64:112–22.

    Article  CAS  Google Scholar 

  38. Farrugia LJ. WinGX suite for small-molecule single-crystal crystallography. J App Crystallogr. 1999;32:837–8.

    Article  CAS  Google Scholar 

  39. Giannozzi P, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter. 2009;21:395502–21.

    Article  Google Scholar 

  40. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–8.

    Article  CAS  Google Scholar 

  41. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-García J, Cohen AJ, Yang WJ. Revealing noncovalent interactions. J Am Chem Soc. 2010;132:6498–506.

    Article  CAS  Google Scholar 

  42. Otero-de-la Roza A, Johnson ER, Contreras-Garcia J. Revealing non-covalent interactions in solids: NCI plots revisited. Phys Chem Chem Phys. 2012;14:12165–72.

    Article  CAS  Google Scholar 

  43. Otero-de-la Roza A, Blanco MA, Pendãs AM, Luaña V. Critic: a new program for the topological analysis of solid-state electron densities. Comput Phys Commun. 2009;180:157–66.

    Article  CAS  Google Scholar 

  44. Otero-de-la Roza A, Johnson ER, Luaà V. Critic2: a program for real-space analysis of quantum chemical interactions in solids. Comput Phys Commun. 2014;185:1007–18.

    Article  CAS  Google Scholar 

  45. Saha CR. Silver(I) and silver(III) complexes of biguanides and N′-amidinoisoureas. J Inorg Nucl Chem. 1976;38:1635–40.

    Article  CAS  Google Scholar 

  46. Prabavathi N, Nilufer A, Krishnakumar V. FT-IR, FT-Raman and DFT quantum chemical study on the molecular conformation, vibrational and electronic transitions of 1-(m-(trifluoromethyl)phenyl)piperazine. Spectrochim Acta Part A Mol Biomol Spectrosc. 2014;121:483–93.

    Article  CAS  Google Scholar 

  47. Tasal E, Kumalar M. Structure and vibrational spectra of 6-(4-fluorobenzoyl)-3-(2-(4-methylpiperazin-1-yl)-2-oxoethyl)benzo[d]thiazol-2(3H)-one molecule. Spectrochim Acta. 2012;96:548–62.

    Article  CAS  Google Scholar 

  48. Addison CC, Gatehouse BM. The infrared spectra of anhydrous transition-metal nitrates. J Chem Soc. 1960. doi:10.1039/JR9600000613.

    Google Scholar 

  49. Gatehouse BM, Livingstone SE, Nyholm RS. Infrared spectra of some nitrato-co-ordination complexes. J Chem Soc. 1957. doi:10.1039/JR9570004222.

    Google Scholar 

  50. Temel H, Ilhan S, Sekerci M, Ziyadanogŭlları R. The synthesis and spectral characterization of new Cu(II), Ni(II), Co(III), and Zn(II) complexes with schiff base. Spectrosc Lett. 2002;35:219–28.

    Article  CAS  Google Scholar 

  51. Ilhan S, Temel H, Kılıc A, Tas E. Synthesis and spectral characterization of macrocyclic NiII complexes derived from various diamines, NiII perchlorate and 1,4-bis(2-carboxyaldehydephenoxy)butane. Transit Met Chem. 2007;32:1012–7.

    Article  CAS  Google Scholar 

  52. Nakamoto K. Infrared raman spectra inorganic and coordination compounds, part B, 5th edn. New York: Wiley; 1998.

    Google Scholar 

  53. Nkhili NL, Rekik W, Naïli H, Mhiri T, Bataille T. Piperazinediium diselenatohexaaquacobaltate(II) dihydrate (C4H12N2)[Co(SeO4)2(H2O)4]·2H2O. Solid State Phenom. 2013;194:171–4.

    Article  Google Scholar 

  54. Rekik W, Naïli H, Bataille T, Roisnel T, Mhiri T. Supramolecular networks of transition metal sulfates templated by piperazine. Inorg Chim Acta. 2006;359:3954–62.

    Article  CAS  Google Scholar 

  55. Rekik W, Naïli H, Mhiri T, Bataille T. Piperazinediium hexaaquazinc(II) bis(sulfate): a structural analogue of Tutton’s salts. Acta Cryst. 2005;E61:m629–31.

    Google Scholar 

  56. Pan J-X, Yang G-Y, Sun Y-Q. Piperazinium hexaaquacobalt(II) disulfate. Acta Cryst. 2003;E59:m286–8.

    Google Scholar 

  57. Wu D, Zhao Y, Ye H, Wu G. Bis[4-chloro-N′-(2-pyridylmethylidene)-benzohydrazidato]cobalt(III) nitrate sesquihydrate. Acta Cryst. 2010;E66:m1568–9.

    Google Scholar 

  58. Guo G-Q, Deng J-H, Chen J. Aqua(hippurato)bis(1,10-phenanthroline)cobalt(II) nitrate monohydrate. Acta Cryst. 2010;E66:m1415–6.

    Google Scholar 

  59. Rosu T, Pahontu E, Reka-Stefana M, Ilies D-C, Georgescu R, Shova S, Gulea A. Synthesis, structural and spectral studies of Cu(II) and V(IV) complexes of a novel Schiff base derived from pyridoxal. Antimicrobial activity. Polyhedron. 2012;31:352–60.

    Article  CAS  Google Scholar 

  60. Ilhan S, Temel H. Synthesis and spectral studies of macrocyclic Cu(II), Ni(II) and Co(II) complexes by template reaction of 1,4-bis(3-aminopropoxy)butane with metal(II) nitrate and salicylaldehyde derivatives. J Mol Struct. 2008;891:157–66.

    Article  CAS  Google Scholar 

  61. Brown ID. On the geometry of O–H···O hydrogen bonds. Acta Cryst. 1976;A32:24–31.

    Article  Google Scholar 

  62. Blessing RH. Hydrogen bonding and thermal vibrations in crystalline phosphate salts of histidine and imidazole. Acta Cryst. 1986;B42:613–21.

    Article  CAS  Google Scholar 

  63. Hajlaoui F, Naïli H, Yahyaoui S, Turnbull MM, Mhiri T, Bataille T. Synthesis, characterization and magnetic properties of four new organically templated metal sulfates [C5H14N2][MII(H2O)6](SO4)2, (MII = Mn, Fe Co, Ni). J Chem Soc Dalton Trans. 2011;40:11613–20.

    Article  CAS  Google Scholar 

  64. Nkhili NL, Rekik W, Mhiri T, Mahmudov KT, Kopylovich MN, Naïli H. Double piperazinediium and 1,4-diazabicyclo[2.2.2]octanediium MII selenates (MII = CoII, NiII, CuII, ZnII) as effective catalysts for Henry reaction. Inorg Chim Acta. 2014;412:27–31.

    Article  CAS  Google Scholar 

  65. Kammoun O, Loulou N, Rekik W, Naïli H, Mhiri T, Bataille T. Synthesis, crystal structure and characterization of a new dabcodiium hexaaquacobalt(II) bis(selenate), (C6H14N2)[Co(H2O)6](SeO4)2. J Chem Crystallogr. 2012;42:103–10.

    Article  CAS  Google Scholar 

  66. Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN, Yang W. NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput. 2011;7:625–32.

    Article  Google Scholar 

  67. Yang J, Waller MP. Revealing noncovalent interactions in quantum crystallography: taurine revisited. J Comput Chem. 2013;34:466–70.

    Article  CAS  Google Scholar 

  68. Badri Z, Bouzkova K, Foroutan-Nejad C, Marek R. Origin of the thermodynamic stability of the polymorph IV of crystalline barbituric acid: evidence from solid-state NMR and electron density analyses. Cryst Growth Des. 2014;14:2763–72.

    Article  CAS  Google Scholar 

  69. Dale SG, Otero-de-la-Roza A, Johnson ER. Density-functional description of electrides. Phys Chem Chem Phys. 2014;16:14584–93.

    Article  CAS  Google Scholar 

  70. Fugu MB, Ndahi NP, Paul BB, Mustapha AN. Synthesis, characterization, and antimicrobial studies of some vanillin Schiff base metal (II) complexes. J Chem Pharm Res. 2013;5:22–8.

    CAS  Google Scholar 

  71. Hanif M, Chohan ZH. Synthesis, spectral characterization and biological studies of transition metal(II) complexes with triazole Schiff bases. Appl Organomet Chem. 2013;27:36–44.

    Article  CAS  Google Scholar 

  72. Koch AL. Bacterial wall as target for attack: past, present, and future research. Clin Microbiol Rev. 2003;16:673–87.

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks are expressed to Pr. Alberto Otero-de-la-Roza (National Institute for Nanotechnology, National Research Council of Canada) for the contribution in the NCI calculations. AOR thanks the Spanish Malta/Consolider initiative (No. CSD2007-00045) and Dr. Thierry Bataille (Ecole Nationale Supérieure de Chimie de Rennes, France) for the assistance in the TDXD measurements. AOR acknowledges Dr. Thierry Roisnel (Centre de diffractométrie X CDIFX, Institue des sciences chimiques de Rennes (ISCR), université de Rennes 1, France) for supplying single-crystal data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houcine Naïli.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, D.B., Rekik, W., Mefteh, F.B. et al. Thermal decomposition and biological activity of two supramolecular hybrid nitrates templated by piperazine. J Therm Anal Calorim 127, 1553–1565 (2017). https://doi.org/10.1007/s10973-016-6056-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-6056-8

Keywords

Navigation