Journal of Thermal Analysis and Calorimetry

, Volume 127, Issue 2, pp 1467–1477 | Cite as

Interactions of cyanidin and cyanidin 3-O-β-glucopyranoside with model lipid membranes

  • Violeta Rakić
  • Ajda Ota
  • Dušan Sokolović
  • Nataša Poklar Ulrih


Cyanidin and cyanidin 3-O-β-glucopyranoside (Cy3Glc) are flavonoids that have several biological properties, including as antioxidants. The interactions of cyanidin and Cy3Glc with model lipid membranes differing in surface charge and phase state were investigated using differential scanning calorimetry and fluorescence emission polarization spectrometry. Differential scanning calorimetry shows that cyanidin and Cy3Glc have no effects on the phase transition of zwitterionic liposomes composed of the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and negatively charged liposomes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) at pH 7.0. Emission polarization spectrometry using 1,6-diphenyl-1,3,5-hexatriene (DPH) and N,N,N-trimethyl-4-(6-phenyl-1,3,5-hexatrien-1-yl)phenylammonium p-toluenesulfonate (TMA-DPH) probes shows that cyanidin slightly increases the polarization of DPPC and DPPG liposomes in the gel state at 298.15 K. Significant ordering effects of cyanidin on DPPC liposomes in the liquid state at 318.15 K and no effect on the liquid state of DPPG at 318.15 K were observed using the DPH and TMA-DPH probes. Cy3Glc causes no change in polarization regardless the gel or liquid-disordered state of DPPC or DPPG liposomes. Cy3Glc due to its glucoside moiety is too bulky to partition into water–lipid interface or between the nonpolar acyl chains of membranes. The results of this work may contribute to understanding the low bioavailability of glycosides.


Cyanidin Cyanidin 3-glucoside DPPC and DPPG model membranes DSC Fluorescence emission polarization of DPH and TMA-DPH 



The study was financially supported by Slovenian Research Agency through the research program P4-0121 (N.P.U.) and the bilaterally project between Republic of Slovenia and Republic of Serbia BI-RS/12-13-015 (N.P.U. and D.S). V.R. was partly financed by the CEPUS SI-8402/2010—bilateral scholarship.


  1. 1.
    Castañeda-Ovando A, de Pacheco-Hernández LM, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA. Chemical studies of anthocyanins: a review. Food Chem. 2009;113:859–71.CrossRefGoogle Scholar
  2. 2.
    Chong MFF, Macdonald R, Lovegrove JA. Fruit polyphenols and CVD risk: a review of human intervention studies. Brit J Nutr. 2010;104:S28–39.CrossRefGoogle Scholar
  3. 3.
    Chen P-N, Chu S-C, Chiou H-L, Chiang C-L, Yang S-F, Hsieh Y-S. Cyanidin 3-glucoside and peonidin 3-glucoside inhibit tumor cell growth and induce apoptosis in vitro and suppress tumor growth in vivo. Nutr Cancer. 2005;53:232–43.CrossRefGoogle Scholar
  4. 4.
    Fukumoto LR, Mazza G. Assessing antioxidant and prooxidant activities of phenolic compounds. J Agr Food Chem. 2000;48:3597–604.CrossRefGoogle Scholar
  5. 5.
    Kähkönen MP, Heinonen M. Antioxidant activity of anthocyanins and their aglycons. J Agr Food Chem. 2003;51:628–33.CrossRefGoogle Scholar
  6. 6.
    Nayak B, Berrios JDJ, Powers JR, Tang J. Thermal degradation of anthocyanins from purple potato (cv. Purple Majesty) and impact on antioxidant capacity. J Agr Food Chem. 2011;59:11040–9.CrossRefGoogle Scholar
  7. 7.
    Xiong S, Melton LD, Easteal AJ, Siew D. Stability and antioxidant activity of black currant anthocyanins in solution and encapsulated in glucan gel. J Agr Food Chem. 2006;54:6201–8.CrossRefGoogle Scholar
  8. 8.
    Mazza G, Kay CD, Cottrell T, Holub BJ. Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J Agr Food Chem. 2002;50:7731–7.CrossRefGoogle Scholar
  9. 9.
    Stintzing FC, Stintzing AS, Carle R, Frei B, Wrolstad RE. Color and antioxidant properties of cyanidin-based anthocyanin pigments. J Agr Food Chem. 2002;50:6172–81.CrossRefGoogle Scholar
  10. 10.
    Wang H, Cao G, Prior RL. Oxygen radical absorbing capacity of anthocyanins. J Agr Food Chem. 1997;45:304–9.CrossRefGoogle Scholar
  11. 11.
    Satué-Gracia MT, Heinonen M, Frankel EN. Anthocyanins as antioxidants on human low-density lipoprotein and lecithin–liposome systems. J Agr Food Chem. 1997;45:3362–7.CrossRefGoogle Scholar
  12. 12.
    Kähkönen MP, Hopia AI, Heinonen M. Berry phenolics and their antioxidant activity. J Agr Food Chem. 2001;49:4076–82.CrossRefGoogle Scholar
  13. 13.
    Abuja PM, Albertini R. Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clin Chim Acta. 2001;306:1–17.CrossRefGoogle Scholar
  14. 14.
    Arora A, Byrem TM, Nair MG, Strasburg GM. Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids. Arch Biochem Biophys. 2000;373:102–9.CrossRefGoogle Scholar
  15. 15.
    Arora A, Nair MG, Strasburg GM. Structure–activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radical Bio Med. 1998;24:1355–63.CrossRefGoogle Scholar
  16. 16.
    McGhie TK, Walton MC. The bioavailability and absorption of anthocyanins: towards a better understanding. Mol Nutr Food Res. 2007;51:702–13.CrossRefGoogle Scholar
  17. 17.
    Prior RL, Wu X. Anthocyanins: structural characteristics that result in unique metabolic patterns and biological activities. Free Radical Res. 2006;40:1014–28.CrossRefGoogle Scholar
  18. 18.
    Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005;81:230S–42S.Google Scholar
  19. 19.
    Keller RB, editor. Flavonoids: biosynthesis, biological effects and dietary sources. New York: Nova Science Publishers, Inc.; 2009.Google Scholar
  20. 20.
    Oteiza PI, Erlejman AG, Verstraeten SV, Keen CL, Fraga CG. Flavonoid-membrane Interactions: a protective role of flavonoids at the membrane surface? Clin Dev Immunol. 2005;12:19–25.CrossRefGoogle Scholar
  21. 21.
    Deleu M, Crowet J-M, Nasir MN, Lins L. Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: a review. Biochim Biophys Acta. 2014;1838:3171–90.CrossRefGoogle Scholar
  22. 22.
    Severcan F, Sahin I, Kazanci N. Melatonin strongly interacts with zwitterionic model membranes-evidence from Fourier transform infrared spectroscopy and differential scanning calorimetry. Biochim Biophys Acta - Biomembr. 2005;1668:215–22.CrossRefGoogle Scholar
  23. 23.
    Korkmaz F, Severcan F. Effect of progesterone on DPPC membrane: evidence for lateral phase separation and inverse action in lipid dynamics. Arch Biochem Biophys. 2005;440:141–7.CrossRefGoogle Scholar
  24. 24.
    Potamitis C, Chatzigeorgiou P, Siapi E, Viras K, Mavromoustakos T, Hodzic A, Pabst G, Cacho-Nerin F, Laggner P, Rappolt M. Interactions of the AT1 antagonist valsartan with dipalmitoyl-phosphatidylcholine bilayers. Biochim Biophys Acta. 2011;1808:1753–63.CrossRefGoogle Scholar
  25. 25.
    Ergun S, Demir P, Uzbay T, Severcan F. Agomelatine strongly interacts with zwitterionic DPPC and charged DPPG membranes. Biochim Biophys Acta. 2014;1838:2798–806.CrossRefGoogle Scholar
  26. 26.
    Riske KA, Barroso RP, Vequi-Suplicy CC, Germano R, Henriques VB, Lamy MT. Lipid bilayer pre-transition as the beginning of the melting process. Biochim Biophys Acta. 2009;1788:954–63.CrossRefGoogle Scholar
  27. 27.
    Londoño-Londoño J, Lima VRD, Jaramillo C, Creczynski-pasa T. Hesperidin and hesperetin membrane interaction: understanding the role of 7-O-glycoside moiety in flavonoids. Arch Biochem Biophys. 2010;499:6–16.CrossRefGoogle Scholar
  28. 28.
    Bilge D, Kazanci N, Severcan F. Acyl chain length and charge effect on Tamoxifen–lipid model membrane interactions. J Mol Struct. 2013;1040:75–82.CrossRefGoogle Scholar
  29. 29.
    Fox CB, Harris JM. Confocal Raman microscopy for simultaneous monitoring of partitioning and disordering of tricyclic antidepressants in phospholipid vesicle membranes. J Raman Spectrosc. 2010;41:498–507.CrossRefGoogle Scholar
  30. 30.
    Pickholz M, Oliveira ON, Skaf MS. Interactions of chlorpromazine with phospholipid monolayers: effects of the ionization state of the drug. Biophys Chem. 2007;125:425–34.CrossRefGoogle Scholar
  31. 31.
    Gidalevitz D, Ishitsuka Y, Muresan AS, Konovalov O, Waring AJ, Lehrer RI, Lee KYC. Interaction of antimicrobial peptide protegrin with biomembranes. P Natl Acad Sci USA. 2003;100:6302–7.CrossRefGoogle Scholar
  32. 32.
    Chen X, Huang Z, Hua W, Castada H, Allen HC. Reorganization and caging of DPPC, DPPE, DPPG, and DPPS monolayers caused by dimethylsulfoxide observed using brewster angle microscopy. Langmuir. 2010;26:18902–8.CrossRefGoogle Scholar
  33. 33.
    Brouillard R, Iacobucci GA, Sweeny JG. Chemistry of anthocyanin pigments. 9. UV–Visible spectrophotometric determination of the acidity constants of apigeninidin and three related 3-deoxyflavylium salts. J Am Chem Soc. 1982;104:7585–90.CrossRefGoogle Scholar
  34. 34.
    Drabent R, Pliszka B, Huszcza-Ciołkowska G, Smyk B. Ultraviolet fluorescence of cyanidin and malvidin glycosides in aqueous environment. Spectrosc Lett. 2007;40:165–82.CrossRefGoogle Scholar
  35. 35.
    Figueiredo P, Lima JC, Santos H, Wigand M-C, Brouillard R, Maqanita AL, Pina F. Photochromism of the synthetic 4′,7-dihydroxyflavylium chloride. J Am Chem Soc. 1994;116:1249–54.CrossRefGoogle Scholar
  36. 36.
    Lasic DD. Liposomes: from physics to applications. 1st ed. Amsterdam: Elsevier Science Ltd; 1993.Google Scholar
  37. 37.
    Poklar Ulrih N, Maričić M, Ota A, Šentjurc M, Abram V. Kaempferol and quercetin interactions with model lipid membranes. Food Res Int. 2015;71:146–54.CrossRefGoogle Scholar
  38. 38.
    Lakowicz JR. Principles of fluorescence spectroscopy. New York: Springer; 2006.CrossRefGoogle Scholar
  39. 39.
    Watts A, Harlos K, Maschke W, Marsh D. Control of the structure and fluidity of phosphatidylglycerol bilayers by pH titration. Biochim Biophys Acta. 1978;510:63–74.CrossRefGoogle Scholar
  40. 40.
    Wesołowska O, Gasiorowska J, Petrus J, Czarnik-Matusewicz B, Michalak K. Interaction of prenylated chalcones and flavanones from common hop with phosphatidylcholine model membranes. Biochim Biophys Acta. 2014;1838:173–84.CrossRefGoogle Scholar
  41. 41.
    Pruchnik H, Bonarska-Kujawa D, Kleszczyńska H. Effect of chlorogenic acid on the phase transition in phospholipid and phospholipid/cholesterol membranes. J Therm Anal Calorim. 2014;118:943–50.CrossRefGoogle Scholar
  42. 42.
    Cater BR, Chapman D, Hawes SM, Saville J. Lipid phase transitions and drug interactions. Biochim Biophys Acta. 1974;363:54–69.CrossRefGoogle Scholar
  43. 43.
    Papahadjopoulos D, Jacobson K, Poste G, Shepherd G. Effects of local anesthetics on membrane properties. I. Changes in the fluidity of phospholipid bilayers. Biochim Biophys Acta. 1975;394:504–19.CrossRefGoogle Scholar
  44. 44.
    Brouillard R. Chemical structure of anthocyanins. In: Markakis P, editor. Anthocyanins as food color. New York: Academic Press; 1982. p. 1–40.CrossRefGoogle Scholar
  45. 45.
    Saija A, Bonina F, Trombetta D, Tomaino A, Montenegro L, Smeriglio P, Castelli F. Flavonoid-biomembrane interactions: a calorimetric study on dipalmitoylphosphatidylcholine vesicles. Int J Pharm. 1995;124:1–8.CrossRefGoogle Scholar
  46. 46.
    Ionov M, Klajnert B, Gardikis K, Hatziantoniou S, Palecz B, Salakhutdinov B, Cladera J, Zamaraeva M, Demetzos C, Bryszewska M. Effect of amyloid beta peptides Aβ 1–28 and Aβ 25–40 on model lipid membranes. J Therm Anal Calorim. 2010;99:741–7.CrossRefGoogle Scholar
  47. 47.
    Bonarska-Kujawa D, Pruchnik H, Oszmiański J, Sarapuk J, Kleszczyńska H. Changes caused by fruit extracts in the lipid phase of biological and model membranes. Food Biophys. 2011;6:58–67.CrossRefGoogle Scholar
  48. 48.
    Xu X, London E. The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochem US. 2000;39:843–9.CrossRefGoogle Scholar
  49. 49.
    PubChem [Internet]. [cited 2014 Aug 25].
  50. 50.
    Smith EA, Dea PK. Differential scanning calorimetry studies of phospholipid membranes: the interdigitated gel phase. In: Elkordy AA, editor. Applications of calorimetry in a wide context—Differential scanning calorimetry, isothermal titration calorimetry and microcalorimetry. InTech; 2013. p. 407–44.Google Scholar
  51. 51.
    Hribar U, Poklar Ulrih N. The metabolism of anthocyanins. Curr Drug Metab. 2014;15:3–13.CrossRefGoogle Scholar
  52. 52.
    Ota A, Abramovič H, Abram V, Poklar Ulrih N. Interactions of p-coumaric, caffeic and ferulic acids and their styrenes with model lipid membranes. Food Chem. 2011;125:1256–61.CrossRefGoogle Scholar
  53. 53.
    Abram V, Berlec B, Ota A, Šentjurc M, Blatnik P, Poklar Ulrih N. Effect of flavonoid structure on the fluidity of model lipid membranes. Food Chem. 2013;139:804–13.CrossRefGoogle Scholar
  54. 54.
    Poklar Ulrih N, Ota A, Šentjurc M, Kure S, Abram V. Flavonoids and cell membrane fluidity. Food Chem. 2010;121:78–84.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Violeta Rakić
    • 1
  • Ajda Ota
    • 2
  • Dušan Sokolović
    • 3
  • Nataša Poklar Ulrih
    • 2
  1. 1.College of Agriculture and Food TechnologyProkupljeSerbia
  2. 2.Department of Food Science and Technology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Faculty of MedicineUniversity of NišNisSerbia

Personalised recommendations