Skip to main content
Log in

Poly(ethylene trisulfide)/graphene oxide nanocomposites

A study on interfacial interactions and thermal performance

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The final performance of polysulfide nanocomposites is highly affected by the microstructure of these materials. Moreover, interactions between the components involved in the structure of nanocomposites dictate the microstructure. Here, we investigate the nature and mechanism of interfacial interactions between graphene oxide (GO) nanosheets and poly(ethylene trisulfide) macromolecules (PETRS), with and without sodium dodecylbenzenesulfonate (SDBS) as a surfactant. Fourier transform infrared spectroscopy results show that GO nanosheets interact with SDBS molecules through non-covalent C–H···O hydrogen bonding between –OH groups of GO nanosheets and –CH3 groups of the SDBS. In addition, interfacial interactions between SDBS-modified GO nanosheets and PETRS macromolecules take place through two main mechanisms: (1) interactions between sulfur-containing segments of PETRS and C=O groups of GO nanosheets and (2) interactions between ethylene segments of polysulfide and C=O groups of GO. X-ray diffraction and transmission electron microscopy results confirm that the presence of SDBS on the interfacial region of GO nanosheets increases the exfoliation extent of GO nanosheets in the PETRS matrix. Also, differential scanning calorimetry and thermogravimetric analyses show that interactions between SDBS-modified GO and PETRS result in extended melting process and degradation range of nanocomposites. Moreover, the melting enthalpy of PETRS macromolecules increases noticeably in the presence of SDBS-modified GO nanosheets. This is in close accordance with the structural behavior of nanocomposites, where the semicrystalline behavior of PETRS macromolecules becomes more dominant in the presence of SDBS-modified GO nanosheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Papageorgiou DG, Kinloch IA, Young RJ. Graphene/elastomer nanocomposites. Carbon. 2015;95:460–84.

    Article  CAS  Google Scholar 

  2. Li B, Zhong W-H. Review on polymer/graphite nanoplatelet nanocomposites. J Mater Sci. 2011;46(17):5595–614.

    Article  CAS  Google Scholar 

  3. Paszkiewicz S, Szymczyk A, Špitalský Z, Soccio M, Mosnáček J, Ezquerra TA, et al. Electrical conductivity of poly(ethylene terephthalate)/expanded graphite nanocomposites prepared by in situ polymerization. J Polym Sci Part B Polym Phys. 2012;50(23):1645–52.

    Article  CAS  Google Scholar 

  4. Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci. 2011;36(5):638–70.

    Article  CAS  Google Scholar 

  5. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH. Recent advances in graphene based polymer composites. Prog Polym Sci. 2010;35(11):1350–75.

    Article  CAS  Google Scholar 

  6. Allahbakhsh A, Sharif F, Mazinani S. The influence of oxygen-containing functional groups on the surface behavior and roughness characteristics of graphene oxide. Nano. 2013;08(04):1350045.

    Article  Google Scholar 

  7. Allahbakhsh A, Mazinani S. Influences of sodium dodecyl sulfate on vulcanization kinetics and mechanical performance of EPDM/graphene oxide nanocomposites. RSC Adv. 2015;5(58):46694–704.

    Article  CAS  Google Scholar 

  8. Li X, Wang H, Robinson JT, Sanchez H, Diankov G, Dai H. Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc. 2009;131(43):15939–44.

    Article  CAS  Google Scholar 

  9. Li MJ, Liu CM, Xie YB, Cao HB, Zhao H, Zhang Y. The evolution of surface charge on graphene oxide during the reduction and its application in electroanalysis. Carbon. 2014;66:302–11.

    Article  CAS  Google Scholar 

  10. Bian J, Lin HL, He FX, Wang L, Wei XW, Chang IT, et al. Processing and assessment of high-performance poly(butylene terephthalate) nanocomposites reinforced with microwave exfoliated graphite oxide nanosheets. Eur Polym J. 2013;49(6):1406–23.

    Article  CAS  Google Scholar 

  11. Wang WP, Liu Y, Li XX, You YZ. Synthesis and characteristics of poly(methyl methacrylate)/expanded graphite nanocomposites. J Appl Polym Sci. 2006;100(2):1427–31.

    Article  CAS  Google Scholar 

  12. Shanks RA, Cerezo FT. Preparation and properties of poly(propylene-g-maleic anhydride) filled with expanded graphite oxide. Compos A. 2012;43(7):1092–100.

    Article  CAS  Google Scholar 

  13. Piana F, Pionteck J. Effect of the melt processing conditions on the conductive paths formation in thermoplastic polyurethane/expanded graphite (TPU/EG) composites. Compos Sci Technol. 2013;80:39–46.

    Article  CAS  Google Scholar 

  14. Wang Y-X, Huang L, Sun L-C, Xie S-Y, Xu G-L, Chen S-R, et al. Facile synthesis of a interleaved expanded graphite-embedded sulphur nanocomposite as cathode of Li–S batteries with excellent lithium storage performance. J Mater Chem. 2012;22(11):4744.

    Article  CAS  Google Scholar 

  15. Allahbakhsh A, Sheydaei M, Mazinani S, Kalaee M. Enhanced thermal properties of poly(ethylene tetrasulfide) via expanded graphite incorporation by in situ polymerization method. High Perform Polym. 2013;25(5):576–83.

    Article  Google Scholar 

  16. Haghighi AH, Sheydaei M, Allahbakhsh A, Ghatarband M, Hosseini FS. Thermal performance of poly(ethylene disulfide)/expanded graphite nanocomposites. J Therm Anal Calorim. 2014;117(2):525–35.

    Article  CAS  Google Scholar 

  17. Sheydaei M, Allahbakhsh A, Haghighi AH, Ghadi A. Synthesis and characterization of poly(methylene disulfide) and poly(ethylene disulfide) polymers in the presence of a phase transfer catalyst. J Sulfur Chem. 2013;35(1):67–73.

    Article  Google Scholar 

  18. Kim NH, Kuila T, Kim KM, Nahm SH, Lee JH. Material selection windows for hybrid carbons/poly(phenylene sulfide) composite for bipolar plates of fuel cell. Polym Test. 2012;31(4):537–45.

    Article  CAS  Google Scholar 

  19. Feng S, Shang Y, Xie X, Wang Y, Xu J. Synthesis and characterization of crosslinked sulfonated poly(arylene ether sulfone) membranes for DMFC applications. J Membr Sci. 2009;335(1–2):13–20.

    Article  CAS  Google Scholar 

  20. Li L, Yang X, Zhao J, Gao J, Hagfeldt A, Sun L. Efficient organic dye sensitized solar cells based on modified sulfide/polysulfide electrolyte. J Mater Chem. 2011;21(15):5573.

    Article  CAS  Google Scholar 

  21. Wang J, Chew SY, Zhao ZW, Ashraf S, Wexler D, Chen J, et al. Sulfur–mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon. 2008;46(2):229–35.

    Article  CAS  Google Scholar 

  22. Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, et al. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc. 2011;133(46):18522–5.

    Article  CAS  Google Scholar 

  23. Allahbakhsh A, Sharif F, Mazinani S, Kalaee MR. Synthesis and characterization of graphene oxide in suspension and powder forms by chemical exfoliation method. Int J Nano Dimens. 2014;5(1):11–20.

    CAS  Google Scholar 

  24. Sonker AK, Wagner HD, Bajpai R, Tenne R, Sui X. Effects of tungsten disulphide nanotubes and glutaric acid on the thermal and mechanical properties of polyvinyl alcohol. Compos Sci Technol. 2016;127:47–53.

    Article  CAS  Google Scholar 

  25. Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem. 1997;18(3):393–402.

    Article  CAS  Google Scholar 

  26. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.

    Article  CAS  Google Scholar 

  27. Vyazovkin S, Dollimore D. Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J Chem Inf Comput Sci. 1996;36(1):42–5.

    Article  CAS  Google Scholar 

  28. Allahbakhsh A, Mazinani S, Kalaee MR, Sharif F. Cure kinetics and chemorheology of EPDM/graphene oxide nanocomposites. Thermochim Acta. 2013;563:22–32.

    Article  CAS  Google Scholar 

  29. Yan J, Zhao Z, Pan L. Growth and characterization of graphene by chemical reduction of graphene oxide in solution. Phys Status Solid A. 2011;208(10):2335–8.

    Article  CAS  Google Scholar 

  30. Hu W, He G, Chen T, Guo CX, Lu Z, Selvaraj JN, et al. Graphene oxide-enabled tandem signal amplification for sensitive SPRi immunoassay in serum. Chem Commun. 2014;50(17):2133.

    Article  CAS  Google Scholar 

  31. Elman AR, Davydov IE, Kononov LO, Zinin AI, Dugin SN. Synthesis of (13C-methoxy)methacetin for isotopic breath tests. Pharm Chem J. 2014;48(4):279–83.

    Article  CAS  Google Scholar 

  32. Jiang Z, Zhao X, Fu Y, Manthiram A. Composite membranes based on sulfonated poly(ether ether ketone) and SDBS-adsorbed graphene oxide for direct methanol fuel cells. J Mater Chem. 2012;22(47):24862.

    Article  CAS  Google Scholar 

  33. Huiqun C, Meifang Z, Yaogang L. Decoration of carbon nanotubes with iron oxide. J Solid State Chem. 2006;179(4):1208–13.

    Article  Google Scholar 

  34. Qian W, Krimm S. Vibrational spectroscopy of hydrogen bonding: origin of the different behavior of the C–H···O hydrogen bond. J Phys Chem A. 2002;106(28):6628–36.

    Article  CAS  Google Scholar 

  35. Scheiner S, Kar T. Effect of solvent upon CH···O hydrogen bonds with implications for protein folding. J Phys Chem B. 2005;109(8):3681–9.

    Article  CAS  Google Scholar 

  36. Lee KM, Chang H-C, Jiang J-C, Chen JCC, Kao H-E, Lin SH, et al. C–H–O hydrogen bonds in β-sheetlike networks: combined X-ray crystallography and high-pressure infrared study. J Am Chem Soc. 2003;125(40):12358–64.

    Article  CAS  Google Scholar 

  37. Fulmer GR, Miller AJM, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, et al. NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics. 2010;29(9):2176–9.

    Article  CAS  Google Scholar 

  38. Heimer NE, Field L, Neal RA. Biologically oriented organic sulfur chemistry. 21. Hydrodisulfide of a penicillamine derivative and related compounds. J Org Chem. 1981;46(7):1374–7.

    Article  CAS  Google Scholar 

  39. Grassi G, Tyblewski M, Bauder A. Convenient preparation and spectroscopic characterization of methyl hydrodisulfide and methyl deuterodisulfide. Helv Chim Acta. 1985;68(7):1876–9.

    Article  CAS  Google Scholar 

  40. Izunobi JU, Higginbotham CL. Polymer molecular weight analysis by1H NMR spectroscopy. J Chem Educ. 2011;88(8):1098–104.

    Article  CAS  Google Scholar 

  41. Gulmine JV, Janissek PR, Heise HM, Akcelrud L. Polyethylene characterization by FTIR. Polym Test. 2002;21(5):557–63.

    Article  CAS  Google Scholar 

  42. Wang Y. FTIR study of adsorption and reaction of SO2 and H2S on Na/SiO2. Appl Catal B. 1998;16(3):279–90.

    Article  CAS  Google Scholar 

  43. Sundarrajan S, Srinivasan KSV. Thermal degradation processes in poly(acyl sulfides) investigated by pyrolysis-gas chromatography/mass spectrometry. Macromol Rapid Commun. 2003;24(12):724–31.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Allahbakhsh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1223 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allahbakhsh, A., Haghighi, A.H. & Sheydaei, M. Poly(ethylene trisulfide)/graphene oxide nanocomposites. J Therm Anal Calorim 128, 427–442 (2017). https://doi.org/10.1007/s10973-016-5915-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5915-7

Keywords

Navigation