Journal of Thermal Analysis and Calorimetry

, Volume 128, Issue 1, pp 427–442 | Cite as

Poly(ethylene trisulfide)/graphene oxide nanocomposites

A study on interfacial interactions and thermal performance
  • Ahmad Allahbakhsh
  • Amir Hossein Haghighi
  • Milad Sheydaei


The final performance of polysulfide nanocomposites is highly affected by the microstructure of these materials. Moreover, interactions between the components involved in the structure of nanocomposites dictate the microstructure. Here, we investigate the nature and mechanism of interfacial interactions between graphene oxide (GO) nanosheets and poly(ethylene trisulfide) macromolecules (PETRS), with and without sodium dodecylbenzenesulfonate (SDBS) as a surfactant. Fourier transform infrared spectroscopy results show that GO nanosheets interact with SDBS molecules through non-covalent C–H···O hydrogen bonding between –OH groups of GO nanosheets and –CH3 groups of the SDBS. In addition, interfacial interactions between SDBS-modified GO nanosheets and PETRS macromolecules take place through two main mechanisms: (1) interactions between sulfur-containing segments of PETRS and C=O groups of GO nanosheets and (2) interactions between ethylene segments of polysulfide and C=O groups of GO. X-ray diffraction and transmission electron microscopy results confirm that the presence of SDBS on the interfacial region of GO nanosheets increases the exfoliation extent of GO nanosheets in the PETRS matrix. Also, differential scanning calorimetry and thermogravimetric analyses show that interactions between SDBS-modified GO and PETRS result in extended melting process and degradation range of nanocomposites. Moreover, the melting enthalpy of PETRS macromolecules increases noticeably in the presence of SDBS-modified GO nanosheets. This is in close accordance with the structural behavior of nanocomposites, where the semicrystalline behavior of PETRS macromolecules becomes more dominant in the presence of SDBS-modified GO nanosheets.


Graphene oxide Polysulfide Nanocomposite Interfacial interaction Thermal properties 

Supplementary material

10973_2016_5915_MOESM1_ESM.pdf (1.2 mb)
Supplementary material 1 (PDF 1223 kb)


  1. 1.
    Papageorgiou DG, Kinloch IA, Young RJ. Graphene/elastomer nanocomposites. Carbon. 2015;95:460–84.CrossRefGoogle Scholar
  2. 2.
    Li B, Zhong W-H. Review on polymer/graphite nanoplatelet nanocomposites. J Mater Sci. 2011;46(17):5595–614.CrossRefGoogle Scholar
  3. 3.
    Paszkiewicz S, Szymczyk A, Špitalský Z, Soccio M, Mosnáček J, Ezquerra TA, et al. Electrical conductivity of poly(ethylene terephthalate)/expanded graphite nanocomposites prepared by in situ polymerization. J Polym Sci Part B Polym Phys. 2012;50(23):1645–52.CrossRefGoogle Scholar
  4. 4.
    Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci. 2011;36(5):638–70.CrossRefGoogle Scholar
  5. 5.
    Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH. Recent advances in graphene based polymer composites. Prog Polym Sci. 2010;35(11):1350–75.CrossRefGoogle Scholar
  6. 6.
    Allahbakhsh A, Sharif F, Mazinani S. The influence of oxygen-containing functional groups on the surface behavior and roughness characteristics of graphene oxide. Nano. 2013;08(04):1350045.CrossRefGoogle Scholar
  7. 7.
    Allahbakhsh A, Mazinani S. Influences of sodium dodecyl sulfate on vulcanization kinetics and mechanical performance of EPDM/graphene oxide nanocomposites. RSC Adv. 2015;5(58):46694–704.CrossRefGoogle Scholar
  8. 8.
    Li X, Wang H, Robinson JT, Sanchez H, Diankov G, Dai H. Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc. 2009;131(43):15939–44.CrossRefGoogle Scholar
  9. 9.
    Li MJ, Liu CM, Xie YB, Cao HB, Zhao H, Zhang Y. The evolution of surface charge on graphene oxide during the reduction and its application in electroanalysis. Carbon. 2014;66:302–11.CrossRefGoogle Scholar
  10. 10.
    Bian J, Lin HL, He FX, Wang L, Wei XW, Chang IT, et al. Processing and assessment of high-performance poly(butylene terephthalate) nanocomposites reinforced with microwave exfoliated graphite oxide nanosheets. Eur Polym J. 2013;49(6):1406–23.CrossRefGoogle Scholar
  11. 11.
    Wang WP, Liu Y, Li XX, You YZ. Synthesis and characteristics of poly(methyl methacrylate)/expanded graphite nanocomposites. J Appl Polym Sci. 2006;100(2):1427–31.CrossRefGoogle Scholar
  12. 12.
    Shanks RA, Cerezo FT. Preparation and properties of poly(propylene-g-maleic anhydride) filled with expanded graphite oxide. Compos A. 2012;43(7):1092–100.CrossRefGoogle Scholar
  13. 13.
    Piana F, Pionteck J. Effect of the melt processing conditions on the conductive paths formation in thermoplastic polyurethane/expanded graphite (TPU/EG) composites. Compos Sci Technol. 2013;80:39–46.CrossRefGoogle Scholar
  14. 14.
    Wang Y-X, Huang L, Sun L-C, Xie S-Y, Xu G-L, Chen S-R, et al. Facile synthesis of a interleaved expanded graphite-embedded sulphur nanocomposite as cathode of Li–S batteries with excellent lithium storage performance. J Mater Chem. 2012;22(11):4744.CrossRefGoogle Scholar
  15. 15.
    Allahbakhsh A, Sheydaei M, Mazinani S, Kalaee M. Enhanced thermal properties of poly(ethylene tetrasulfide) via expanded graphite incorporation by in situ polymerization method. High Perform Polym. 2013;25(5):576–83.CrossRefGoogle Scholar
  16. 16.
    Haghighi AH, Sheydaei M, Allahbakhsh A, Ghatarband M, Hosseini FS. Thermal performance of poly(ethylene disulfide)/expanded graphite nanocomposites. J Therm Anal Calorim. 2014;117(2):525–35.CrossRefGoogle Scholar
  17. 17.
    Sheydaei M, Allahbakhsh A, Haghighi AH, Ghadi A. Synthesis and characterization of poly(methylene disulfide) and poly(ethylene disulfide) polymers in the presence of a phase transfer catalyst. J Sulfur Chem. 2013;35(1):67–73.CrossRefGoogle Scholar
  18. 18.
    Kim NH, Kuila T, Kim KM, Nahm SH, Lee JH. Material selection windows for hybrid carbons/poly(phenylene sulfide) composite for bipolar plates of fuel cell. Polym Test. 2012;31(4):537–45.CrossRefGoogle Scholar
  19. 19.
    Feng S, Shang Y, Xie X, Wang Y, Xu J. Synthesis and characterization of crosslinked sulfonated poly(arylene ether sulfone) membranes for DMFC applications. J Membr Sci. 2009;335(1–2):13–20.CrossRefGoogle Scholar
  20. 20.
    Li L, Yang X, Zhao J, Gao J, Hagfeldt A, Sun L. Efficient organic dye sensitized solar cells based on modified sulfide/polysulfide electrolyte. J Mater Chem. 2011;21(15):5573.CrossRefGoogle Scholar
  21. 21.
    Wang J, Chew SY, Zhao ZW, Ashraf S, Wexler D, Chen J, et al. Sulfur–mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon. 2008;46(2):229–35.CrossRefGoogle Scholar
  22. 22.
    Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, et al. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc. 2011;133(46):18522–5.CrossRefGoogle Scholar
  23. 23.
    Allahbakhsh A, Sharif F, Mazinani S, Kalaee MR. Synthesis and characterization of graphene oxide in suspension and powder forms by chemical exfoliation method. Int J Nano Dimens. 2014;5(1):11–20.Google Scholar
  24. 24.
    Sonker AK, Wagner HD, Bajpai R, Tenne R, Sui X. Effects of tungsten disulphide nanotubes and glutaric acid on the thermal and mechanical properties of polyvinyl alcohol. Compos Sci Technol. 2016;127:47–53.CrossRefGoogle Scholar
  25. 25.
    Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem. 1997;18(3):393–402.CrossRefGoogle Scholar
  26. 26.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.CrossRefGoogle Scholar
  27. 27.
    Vyazovkin S, Dollimore D. Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J Chem Inf Comput Sci. 1996;36(1):42–5.CrossRefGoogle Scholar
  28. 28.
    Allahbakhsh A, Mazinani S, Kalaee MR, Sharif F. Cure kinetics and chemorheology of EPDM/graphene oxide nanocomposites. Thermochim Acta. 2013;563:22–32.CrossRefGoogle Scholar
  29. 29.
    Yan J, Zhao Z, Pan L. Growth and characterization of graphene by chemical reduction of graphene oxide in solution. Phys Status Solid A. 2011;208(10):2335–8.CrossRefGoogle Scholar
  30. 30.
    Hu W, He G, Chen T, Guo CX, Lu Z, Selvaraj JN, et al. Graphene oxide-enabled tandem signal amplification for sensitive SPRi immunoassay in serum. Chem Commun. 2014;50(17):2133.CrossRefGoogle Scholar
  31. 31.
    Elman AR, Davydov IE, Kononov LO, Zinin AI, Dugin SN. Synthesis of (13C-methoxy)methacetin for isotopic breath tests. Pharm Chem J. 2014;48(4):279–83.CrossRefGoogle Scholar
  32. 32.
    Jiang Z, Zhao X, Fu Y, Manthiram A. Composite membranes based on sulfonated poly(ether ether ketone) and SDBS-adsorbed graphene oxide for direct methanol fuel cells. J Mater Chem. 2012;22(47):24862.CrossRefGoogle Scholar
  33. 33.
    Huiqun C, Meifang Z, Yaogang L. Decoration of carbon nanotubes with iron oxide. J Solid State Chem. 2006;179(4):1208–13.CrossRefGoogle Scholar
  34. 34.
    Qian W, Krimm S. Vibrational spectroscopy of hydrogen bonding: origin of the different behavior of the C–H···O hydrogen bond. J Phys Chem A. 2002;106(28):6628–36.CrossRefGoogle Scholar
  35. 35.
    Scheiner S, Kar T. Effect of solvent upon CH···O hydrogen bonds with implications for protein folding. J Phys Chem B. 2005;109(8):3681–9.CrossRefGoogle Scholar
  36. 36.
    Lee KM, Chang H-C, Jiang J-C, Chen JCC, Kao H-E, Lin SH, et al. C–H–O hydrogen bonds in β-sheetlike networks: combined X-ray crystallography and high-pressure infrared study. J Am Chem Soc. 2003;125(40):12358–64.CrossRefGoogle Scholar
  37. 37.
    Fulmer GR, Miller AJM, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, et al. NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics. 2010;29(9):2176–9.CrossRefGoogle Scholar
  38. 38.
    Heimer NE, Field L, Neal RA. Biologically oriented organic sulfur chemistry. 21. Hydrodisulfide of a penicillamine derivative and related compounds. J Org Chem. 1981;46(7):1374–7.CrossRefGoogle Scholar
  39. 39.
    Grassi G, Tyblewski M, Bauder A. Convenient preparation and spectroscopic characterization of methyl hydrodisulfide and methyl deuterodisulfide. Helv Chim Acta. 1985;68(7):1876–9.CrossRefGoogle Scholar
  40. 40.
    Izunobi JU, Higginbotham CL. Polymer molecular weight analysis by1H NMR spectroscopy. J Chem Educ. 2011;88(8):1098–104.CrossRefGoogle Scholar
  41. 41.
    Gulmine JV, Janissek PR, Heise HM, Akcelrud L. Polyethylene characterization by FTIR. Polym Test. 2002;21(5):557–63.CrossRefGoogle Scholar
  42. 42.
    Wang Y. FTIR study of adsorption and reaction of SO2 and H2S on Na/SiO2. Appl Catal B. 1998;16(3):279–90.CrossRefGoogle Scholar
  43. 43.
    Sundarrajan S, Srinivasan KSV. Thermal degradation processes in poly(acyl sulfides) investigated by pyrolysis-gas chromatography/mass spectrometry. Macromol Rapid Commun. 2003;24(12):724–31.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Young Researchers and Elite Club, Shiraz BranchIslamic Azad UniversityShirazIran
  2. 2.Department of Polymer Engineering, Faculty of Engineering, Shiraz BranchIslamic Azad UniversityShirazIran
  3. 3.Department of Polymer Engineering, South Tehran BranchIslamic Azad UniversityTehranIran

Personalised recommendations