Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 128, Issue 1, pp 201–210 | Cite as

Flame-retardant epoxy resin based on aluminum monomethylphosphinate

  • Quan Hu
  • Panrui Peng
  • Sha Peng
  • Jiyan Liu
  • Xueqing Liu
  • Liyong Zou
  • Jia Chen
Article

Abstract

Aluminum monomethylphosphinate (MeP-Al) was synthesized and applied as a flame retardant for epoxy resin (EP). The structure of MeP-Al was characterized with FTIR, 1H NMR, 31P NMR and XRF. Curing reaction monitoring, thermal analysis, evolved gas and solid residue analysis, flammability tests (LOI, UL 94), microcombustion calorimeter and chemical analysis of residues were used. 20 mass% of MeP-Al provides EP with desired flame retardancy and anti-dripping property. The formulation passes the UL 94 V0 rating with LOI value of 29.6 %. MeP-Al mainly acts in the solid phase, and minority acts in the gas phase. P–H bond in MeP-Al can react with the unsaturated bond of compounds coming from decomposition of EP to form the condensed and stable phosphate salts in the solid phase. The firm char is a good barrier to avoid heat transfer and progressive degrading of the inner material.

Keywords

Flame retardants Metal salts of phosphinate Epoxy Thermosetting 

Notes

Acknowledgements

This work is supported by the national high-tech r&d program of China (863 program) [2015AA033406] and the key project of nature science founding of Hubei [ZRZ2014000060].

References

  1. 1.
    Paluvai NR, Mohanty S, Nayak SK. Synthesis and modifications of epoxy resins and their composites: a review. Polym-Plast Technol. 2014;53:1723–58.CrossRefGoogle Scholar
  2. 2.
    Levchik SV, Weil ED. A review of current flame retardant systems for epoxy resins. J Fire Sci. 2006;24:345–64.CrossRefGoogle Scholar
  3. 3.
    Xiao D, Li Z, Juan SD, Gohs U, Wagenknecht U, Voit B, Wang DY. Preparation, fire behavior and thermal stability of a novel flame retardant polypropylene system. J Therm Anal Calorim. 2016;125:321–9.CrossRefGoogle Scholar
  4. 4.
    Zhang L, Wang YC, Liu Q. Synergistic effects between silicon-containing flame retardant and DOPO on flame retardancy of epoxy resins. J Therm Anal Calorim. 2016;123:1343–50.CrossRefGoogle Scholar
  5. 5.
    Kemmlein S, Herzke D, Law RJ. Brominated flame retardants in the European chemicals policy of REACH-Regulation and determination in materials. J Chromatogr A. 2009;1216:320–33.CrossRefGoogle Scholar
  6. 6.
    Burreau S, Zebühr Y, Broman D, Ishaq R. Biomagnification of PBDEs and PCBs in feed webs from the Baltic Sea and the northern Atalantic Ocean. Sci Total Environ. 2006;366:659–72.CrossRefGoogle Scholar
  7. 7.
    Jiao CM, Zhuo JL, Chen XL. Flame retardant epoxy resin based on bisphenol A epoxy resin modified by phosphoric acid. J Therm Anal Calorim. 2013;114:253–9.CrossRefGoogle Scholar
  8. 8.
    Zhang S, Liu F, Peng H, Peng X, Jiang S, Wang J. Preparation of novel C-6 position carboxyl corn starch by a green method and its application in flame retardance of epoxy resin. Ind Eng Chem Res. 2015;54:11944–52.CrossRefGoogle Scholar
  9. 9.
    Laachachia A, Burgerab N, Apaydina K, Sonnierc R, Ferriolb M. Is expanded graphite acting as flame retardant in epoxy resin? Polym Degrad Stab. 2015;117:22–9.CrossRefGoogle Scholar
  10. 10.
    Döring M, Diederichs J, Non-reactive-fillers in innovative flame retardants in E&E applications, 2nd ed. pinfa: Brussels, Brussels; 2009, pp. 26–7.Google Scholar
  11. 11.
    Chen XL, Ma CY, Jiao CM. Synergistic effects between iron-graphene and ammonium polyphosphate in flame-retardant thermoplastic polyurethane. J Therm Anal Calorim. 2016;. doi: 10.1007/s10973-016-5494-7.Google Scholar
  12. 12.
    Krishnadevi K, Selvaraj V. Development of halogen-free flame retardant phosphazene and rice husk ash incorporated benzoxazine blended epoxy composites for microelectronic applications. New J Chem. 2015;39:6555–67.CrossRefGoogle Scholar
  13. 13.
    Hua J, Shan J, Wen D, Liu X, Zhao J, Tong Z. Flame retardant, mechanical properties and curing kinetics of DOPO-based epoxy resins. Polym Degrad Stab. 2014;109:218–25.CrossRefGoogle Scholar
  14. 14.
    Chen XL, Song WK, Liu JB, Jiao CM, Qian Y. Synergistic flame-retardant effects between aluminum hypophosphite and expandable graphite in silicone rubber composites. J Therm Anal Calorim. 2015;120:1819–26.CrossRefGoogle Scholar
  15. 15.
    Tilliette V, Schmidt LE, Ghoul C, Schaal S. Environmentally friendly flame retardant epoxy for electrical insulation. The 2008 IEEE international symposium on electrical insulation. 2008; 1–2:492.Google Scholar
  16. 16.
    Hoerold S. Flame-retarding thermosetting compositions. US Patent 6,420,459 (2002).Google Scholar
  17. 17.
    Döring M, Diederichs J. Non-Reactive-Fillers. In innovative flame retardants in E&E applications. 2nd ed. Brussels: pinfa. 2009; pp. 25–26.Google Scholar
  18. 18.
    Liu X, Liu J, Chen J, Cai S, Hu C. Novel flame-retardant epoxy composites containing aluminium β-carboxylethylmethylphosphinate. Polym Eng Sci. 2015;55:657–63.CrossRefGoogle Scholar
  19. 19.
    Peters EN, Braidwood CL. Flame retardant composition and method. US Patent 20070080330 A1 (2007).Google Scholar
  20. 20.
    Liu X, Liu J, Guo Y, Cakmak M. influence of structure of the metal salts of phosphinates on the performance of the fire-retardant polymers. AIP Conf Proc. 2015;1664:1–5.Google Scholar
  21. 21.
    Liu X, Liu J, Cai S. Comparative study of aluminum diethylphosphinate and aluminum methylethylphosphinate-filled epoxy flame-retardant composites. Polym Compos. 2012;33:918–26.CrossRefGoogle Scholar
  22. 22.
    Liu J, Chen J, Liu X, Sun S, Cai S. Synthesis of aluminum methylcyclohexyl-phosphinate and its use as flame retardant for epoxy resin. Fire Mater. 2014;38:155–65.CrossRefGoogle Scholar
  23. 23.
    Liu X, Liu J, Sun S, Chen J, Cai S. Novel flame-retardant epoxy based on zinc methylethyl phosphinates. Fire Mater. 2014;38:599–608.CrossRefGoogle Scholar
  24. 24.
    Wang J, Qian L, Xu B, Xi W, Liu X. Synthesis and characterization of aluminum poly-hexamethylenephosphinate and its flame-retardant application in epoxy resin. Polym Degrad Stab. 2015;122:8–17.CrossRefGoogle Scholar
  25. 25.
    Albouy D, Brun A, Munoz A, Etemad-Moghadam G. New(R-hydroxyalkyl) phosphorus amphiphiles: synthesis and dissociation constants. J Org Chem. 1998;63:7223–30.CrossRefGoogle Scholar
  26. 26.
    Wang G, Shen R, Xu Q, Goto M, Zhao Y, Han LB. Stereospecific coupling of h-phosphinates and secondary phosphine oxides with amines and alcohols: a general method for the preparation of optically active organophosphorus acid derivatives. J Org Chem. 2010;75:3890–2.CrossRefGoogle Scholar
  27. 27.
    Ashmus RA, Lowary TL. Synthesis of carbohydrate methyl phosphoramidates. Org Lett. 2014;6:2518–21.CrossRefGoogle Scholar
  28. 28.
    Laachachia A, Cocheza M, Leroyb E, Ferriola M, Lopez-Cuestab JM. Fire retardant systems in poly(methyl methacrylate): interactions between metal oxide nanoparticles and phosphinates. Polym Degrad Stab. 2007;92:61–9.CrossRefGoogle Scholar
  29. 29.
    Braun U, Bahr H, Sturm H, Schartel B. Flame retardancy mechanisms of metal phosphinates and metal phosphinates in combination with melamine cyanurate in glass-fiber reinforced poly(1,4-butylene terephthalate): the influence of metal cation. Polym Adv Technol. 2008;9:680–92.CrossRefGoogle Scholar
  30. 30.
    Lewin M, Endo M. Catalysis of intumescent flame retardancy of polypropylene by metallic compounds. Polym Adv Technol. 2003;14:3–11.CrossRefGoogle Scholar
  31. 31.
    Lewin M. Synergism and catalysis in flame retardancy of polymers. Polym Adv Technol. 2001;12:215–22.CrossRefGoogle Scholar
  32. 32.
    Plage B, Schulten H. Pyrolysis-field ionization mass spectrometry of epoxy resins. Macromolecules. 1988;21:2018–27.CrossRefGoogle Scholar
  33. 33.
    Ahamad T, Alshehri SM. Thermal degradation and evolved gas analysis: a polymeric blend of urea formaldehyde (UF) and epoxy (DGEBA) resin. Arab J Chem. 2014;7:1140–7.CrossRefGoogle Scholar
  34. 34.
    Mertzel E, Koenig JL. Application of FT-IR and NMR to epoxy resins. Adv Polym Sci. 1970;75:73–112.CrossRefGoogle Scholar
  35. 35.
    Levchik SV, Weil ED. Review thermal decomposition, combustion and flame-retardancy of epoxy resins—a review of the recent literature. Polym Int. 2004;53:1901–29.CrossRefGoogle Scholar
  36. 36.
    Xu Q, Han LB. Metal-catalyzed additions of H-P(O) bonds to carbon–carbon unsaturated bonds. J Organomet Chem. 2011;696:130–40.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Quan Hu
    • 1
    • 2
  • Panrui Peng
    • 1
    • 2
  • Sha Peng
    • 1
    • 2
  • Jiyan Liu
    • 1
    • 2
  • Xueqing Liu
    • 1
    • 2
  • Liyong Zou
    • 1
    • 2
  • Jia Chen
    • 1
    • 2
  1. 1.Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of EducationJianghan UniversityWuhanChina
  2. 2.Flexible Display Materials and Technology Co-innovation Center of Hubei ProvinceJianghan UniversityWuhanChina

Personalised recommendations