Journal of Thermal Analysis and Calorimetry

, Volume 128, Issue 1, pp 475–479 | Cite as

Solubility of argon and nitrogen in aqueous solutions of tetradecyltrimethylammonium bromide from 283.15 to 298.15 K and 101,325 Pa partial pressure of gas

  • Luis C. A. Garzon
  • Andres F. Suarez
  • Carmen M. Romero


This paper reports experimental results regarding the solubility of argon and nitrogen in aqueous solutions of tetradecyltrimethylammonium bromide (TTAB) at temperatures between 283.15 and 298.15 K, 101,325 Pa partial pressure of gas, and 0.04–0.20 mol kg−1 of TTAB concentration. Measurements were taken in specially developed equipment, following the change in gas pressure. The gas solubility was determined applying Henry’s law. The experimental results show that the solubility of argon and nitrogen in the TTAB micelles is 62.5–86.3 times higher than the solubility in pure water. The solubility of the studied gases is larger in the TTAB micelles than in the DTAB determined in a previous work under the same experimental conditions, showing the effect of the addition of a methylene group in the alkyl chain of DTAB. Comparing the results obtained, it can be observed that the TTAB micelles are larger and have a higher solubilization capacity.


Gas solubility Aqueous solution Tetradecyltrimethylammonium bromide Surfactants Micelles 



The authors would like to thank Professor Luis H. Blanco (1945–2012) for his advice and support in the development of this work. Professor Blanco was a faculty member of the Department of Chemistry from Universidad Nacional de Colombia. This work was supported by Universidad Nacional de Colombia, Universidad de Bogotá Jorge Tadeo Lozano and Instituto Colombiano para el Desarrollo de la Ciencia y la Tecnología, Francisco José de Caldas - COLCIENCIAS.


  1. 1.
    Battino R, Clever HL. The solubility of gases in liquids. Chem Rev. 1966;66:395–463.CrossRefGoogle Scholar
  2. 2.
    Battino R, Seybold PG. The O2/N2 ratio gas solubility mystery. J Chem Eng Data. 2011;56:5036–44.CrossRefGoogle Scholar
  3. 3.
    Raposo RR, Calviño E, Esteso MA. A new electrochemical method for the determination of gas solubility in aqueous solutions. J Electroanal Chem. 2008;617:157–63.CrossRefGoogle Scholar
  4. 4.
    Battino R, Seybold PG, Campanell FC. Correlations involving the solubility of gases in water at 298.15 K and 101325 Pa. J Chem Eng Data. 2011;56:727–32.CrossRefGoogle Scholar
  5. 5.
    Hefter GT, Tomkins RPT, editors. The experimental determination of solubilities, vol. 6. 1st ed. West Sussex: Wiley; 2003.Google Scholar
  6. 6.
    Davie MK, Zatsepina OY, Buffett BA. Ethane solubility in marine hydrate environments. Mar Geol. 2004;203:177–84.CrossRefGoogle Scholar
  7. 7.
    Yalkowsky SH. Solubility and solubilization in aqueous media. 1st ed. New York: Oxford University Press; 1999.Google Scholar
  8. 8.
    Laurence S, editor. Surfactant science and technology: retrospects and prospects. 1st ed. Boca Ratón: CRC Press; 2014.Google Scholar
  9. 9.
    Adamson AW. Physical chemistry of surfaces. 6th ed. New York: Wiley; 1997.Google Scholar
  10. 10.
    Roy S, Mehra A, Bhowmick D. Prediction of solubility of nonpolar gases in micellar solutions of ionic surfactants. J Colloid Interface Sci. 1997;196:53–61.CrossRefGoogle Scholar
  11. 11.
    Calhoun AR, King AD Jr. The solubility of ethane in aqueous solutions of sodium 1-pentanesulfonate, sodium 1-hexanesulfonate, sodium 1-heptanesulfonate, and sodium 1-octanesulfonate at 25 °C. J Colloid Interface Sci. 2007;309:505–10.CrossRefGoogle Scholar
  12. 12.
    Rosen MJ. Surfactants and interfacial phenomena. 3rd ed. Hoboken: Wiley; 2004.CrossRefGoogle Scholar
  13. 13.
    Blandamer MJ, Cullis PM, Soldi LG, Engberts JBFN, Kacperska A, Van Os NM, Subha MCS. Thermodynamics of micellar systems: comparison of mass action and phase equilibrium models for the calculation of standard Gibbs energies of micelle formation. Adv Colloid Interface Sci. 1995;58:171–209.CrossRefGoogle Scholar
  14. 14.
    Cui X, Mao S, Liu M, Yuan H, Du Y. Mechanism of surfactant micelle formation. Langmuir. 2008;24:10771–5.CrossRefGoogle Scholar
  15. 15.
    Ben-Naim A, Wilf J. Solubility and thermodynamics of solution of argon in aqueous solutions of sodium octanoate and sodium dodecylsulfate. J Solut Chem. 1983;12:861–8.CrossRefGoogle Scholar
  16. 16.
    Ben-Naim A, Battino R. Solubilization of methane, ethane, propane and n-butane in aqueous solutions of sodium dodecylsulfate. J Solut Chem. 1985;14:245–53.Google Scholar
  17. 17.
    Prapaitrakul W, King AD Jr. The solubility of gases in aqueous solutions of decyltrimethyl- and cetyltrimethylammonium bromide. J Colloid Interface Sci. 1985;106:186–93.CrossRefGoogle Scholar
  18. 18.
    Serra MCC, Coelho JPA, Calado JCG, Palavra AMF. Solubility of argon in micellar aqueous solutions of sodium dodecyl sulfate. J Colloid Interface Sci. 1995;173:278–83.CrossRefGoogle Scholar
  19. 19.
    King AD Jr. The solubility of ethane, propane, and carbon dioxide in aqueous solutions of sodium cumene sulfonate. J Colloid Interface Sci. 2004;273:313–9.CrossRefGoogle Scholar
  20. 20.
    Mirgorod YA. Solubility of ethane, propane, and butane in aqueous solutions of sodium dodecyl sulfate. Russ J Gen Chem. 2005;75:31–3.CrossRefGoogle Scholar
  21. 21.
    Romero CM, Garzon LC, Blanco LH, Suarez AF. Solubility of argon and nitrogen in aqueous solutions of dodecyltrimethylammonium bromide (DTAB) from 283.15 to 298.15 K and 101325 Pa partial pressure of gas. J Solut Chem. 2014;43:1147–55.CrossRefGoogle Scholar
  22. 22.
    Mosquera V, del Rıo JM, Attwoodb D, Garcıa M, Jones MN, Prieto G, Suarez J, Sarmiento FA. Study of the aggregation behavior of hexyltrimethylammonium bromide in aqueous solution. J Colloid Interface Sci. 1998;206:66–76.CrossRefGoogle Scholar
  23. 23.
    Evans DF, Allen M, Ninham BW, Fouda A. Critical micelle concentrations for alkyltrimethylammonium bromides in water from 25 to 160 °C. J Solut Chem. 1984;13:87–101.CrossRefGoogle Scholar
  24. 24.
    Kudryashov E, Kapustina T, Morrissey S, Buckin V, Dawson K. The compressibility of alkyltrimethylammonium bromide micelles. J Colloid Interface Sci. 1998;203:59–68.CrossRefGoogle Scholar
  25. 25.
    Thermophysical Properties of Fluid Systems. In: National Institute of Standards and Technology (NIST). Accessed 17 Oct 2015.
  26. 26.
    Berry RS, Rice SA, Ross J. Physical chemistry. 3rd ed. New York: Oxford University Press; 2000.Google Scholar
  27. 27.
    De Lisi RD, Milioto S, Verrall RE. Partial molar volumes and compressibilities of alkyltrimethylammonium bromides. J Solut Chem. 1990;19:665–92.CrossRefGoogle Scholar
  28. 28.
    Silva WP, Silva CMDPS. LAB Fit Curve Fitting Software (Nonlinear Regression and Treatment of Data Program) V 7.2.48 (1999–2011). Accessed 5 Dec 2015.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Luis C. A. Garzon
    • 1
  • Andres F. Suarez
    • 2
  • Carmen M. Romero
    • 1
  1. 1.Departamento de Química, Facultad de CienciasUniversidad Nacional de ColombiaBogotáColombia
  2. 2.Facultad de Ciencias Naturales e IngenieríaUniversidad de Bogotá Jorge Tadeo LozanoBogotáColombia

Personalised recommendations