Journal of Thermal Analysis and Calorimetry

, Volume 128, Issue 1, pp 443–456 | Cite as

Procedure for generation of catalyst-free PE-TG profiles and its consequence on calculated activation energies



Catalytic depolymerization of polyethylene (PE) over several aluminosilicate catalysts was studied using thermogravimetric (TG) analysis. Procedure was proposed for decoupling mass loss related directly to the catalyst and that of PE depolymerization. The benefit of this approach is twofold: (1) It enables a more realistic kinetic analysis, and (2) reduces the total number of required experiments with the pure catalyst by more than 50 %. The activation energies of PE depolymerization over different catalysts were calculated from the treated PE-TG profiles using advanced isoconversional analysis and were compared to those obtained from raw TG profiles. The presented analysis reveals that neglecting the mass loss associated with the aluminosilicate catalyst results in underestimated values of calculated activation energies at low PE conversions, while at high conversions the values of calculated activation energies were overestimated. The apparent PE depolymerization activation energy in the presence of applied catalysts increases in the following order: amorphous silica alumina <heulandite/clinoptilolite (M300) <alumina grafted montmorillonite within the conversion range from 0 to 95 %.


Activation energy Catalytic depolymerization Extracted TG profiles Predicted TG profiles Smoothing Isoconversional analysis 



The authors gratefully acknowledge the financial support of the Ministry of Education, Science and Sport of the Republic of Slovenia through Research Project L2-5465 and the Slovenian Research Agency (ARRS) for financing the Research Program P2-0152. The authors kindly acknowledge Mrs. Špela Božič for performing the TG experiments.

Supplementary material

10973_2016_5872_MOESM1_ESM.docx (615 kb)
Supplementary material 1 (DOCX 614 kb)


  1. 1.
    Marcilla A, Beltrán MI, Gómez-Siurana A, Navarro R, Valdés F. A global kinetic model as a tool to reproduce the deactivation behaviour of the HZSM-5 zeolite in the catalytic cracking of low-density polyethylene. Appl Catal A. 2007;328:124–31.CrossRefGoogle Scholar
  2. 2.
    Renzini MS, Lerici LC, Sedran U, Pierella LB. Stability of ZSM-11 and BETA zeolites during the catalytic cracking of low-density polyethylene. J Anal Appl Pyrol. 2011;92:450–5.CrossRefGoogle Scholar
  3. 3.
    Lin YH, Yang MH, Yeh TF, Ger MD. Catalytic degradation of high density polyethylene over mesoporous and microporous catalysts in a fluidised-bed reactor. Polym Degrad Stab. 2004;86:121–8.CrossRefGoogle Scholar
  4. 4.
    Garforth AA, Lin YH, Sharratt PN, Dwyer J. Production of hydrocarbons by catalytic degradation of high density polyethylene in a laboratory fluidised-bed reactor. Appl Catal A. 1998;169:331–42.CrossRefGoogle Scholar
  5. 5.
    Council Decision of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC. Official Journal of the European Communities, 16. 1. 2003, page L 11/34.Google Scholar
  6. 6.
    Saha B, Ghoshal AK. Model-free kinetics analysis of ZSM-5 catalyzed pyrolysis of waste LDPE. Thermochim Acta. 2007;453:120–7.CrossRefGoogle Scholar
  7. 7.
    Saha B, Reddy PK, Chowlu ACK, Ghoshal AK. Model-free kinetics analysis of nanocrystalline HZSM-5 catalyzed pyrolysis of polypropylene (PP). Thermochim Acta. 2008;468:94–100.CrossRefGoogle Scholar
  8. 8.
    Araujo AS, Fernandes VJ Jr, Fernandes GJT. Thermogravimetric kinetics of polyethelyne degradation over silicoaluminophosphate. Thermochim Acta. 2002;392–393:55–61.CrossRefGoogle Scholar
  9. 9.
    Djinović P, Tomše T, Grdadolnik J, Božič Š, Erjavec B, Zabilskiy M, Pintar A. Natural aluminosilicates for catalytic depolymerization of polyethylene to produce liquid fuel-grade hydrocarbons and low olefins. Catal Today. 2015;258:648–59.CrossRefGoogle Scholar
  10. 10.
    Park JW, Oh SC, Lee HP, Kim HT, Yoo KO. A kinetic analysis of thermal degradation of polymers using a dynamic method. Polym Degrad Stab. 2000;67:535–40.CrossRefGoogle Scholar
  11. 11.
    Saha B, Ghoshal AK. Model-free kinetics analysis of waste PE sample. Thermochim Acta. 2006;451:27–33.CrossRefGoogle Scholar
  12. 12.
    Yang J, Miranda R, Roy C. Using the DTG curve fitting method to determine the apparent kinetic parameters of thermal decomposition of polymers. Polym Degrad Stab. 2001;73:455–61.CrossRefGoogle Scholar
  13. 13.
    Al-Salem SM, Lettieri P. Kinetic study of high density polyethylene (HDPE) pyrolysis. Chem Eng Res Des. 2010;88:1599–606.CrossRefGoogle Scholar
  14. 14.
    Kannan P, Ibrahim S, Reddy KSK, Al Shoaibi AC, Srinivasakannan A. Comparative analysis of the kinetic experiments in polyethylene pyrolysis. J Energy Resour Technol. 2013;136:024001 (6 pages).CrossRefGoogle Scholar
  15. 15.
    Chowlu ACK, Reddy PK, Ghoshal AK. Pyrolytic decomposition and model-free kinetics analysis of mixture of polypropylene (PP) and low-density polyethylene (LDPE). Thermochim Acta. 2009;485:20–5.CrossRefGoogle Scholar
  16. 16.
    Coelho A, Costa L, Marques MM, Fonseca IM, Lemos MANDA, Lemos F. The effect of ZSM-5 zeolite acidity on the catalytic degradation of high-density polyethylene using simultaneous DSC/TG analysis. Appl Catal A. 2012;413–414:183–91.CrossRefGoogle Scholar
  17. 17.
    Shabtai J, Xiao X, Zmierczak W. Depolymerization-liquefaction of plastics and rubbers. 1. Polyethylene, polypropylene, and polybutadiene. Energy Fuels. 1997;11:76–87.CrossRefGoogle Scholar
  18. 18.
    Ding W, Liang J, Anderson LL. Thermal and catalytic degradation of high density polyethylene and commingled post-consumer plastic waste. Fuel Process Technol. 1997;5:47–62.CrossRefGoogle Scholar
  19. 19.
    Ding WB, Tuntawiroon W, Liang J, Anderson LL. Depolymerization of waste plastics with coal over metal-loaded silica-alumina catalysts. Fuel Process Technol. 1996;49:49–63.CrossRefGoogle Scholar
  20. 20.
    Marcilla A, Gómez-Siurana A, Valdés F. Catalytic cracking of low-density polyethylene over H-Beta and HZSM-5 zeolites: influence of the external surface Kinetic model. Polym Degrad Stab. 2007;92:197–204.CrossRefGoogle Scholar
  21. 21.
    Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28:95–101.CrossRefGoogle Scholar
  22. 22.
    Vyazovkin S, Goriyachko V. Potentialities of software for kinetic processing of thermoanalytical data by the isoconversion method. Thermochim Acta. 1992;194:221–30.CrossRefGoogle Scholar
  23. 23.
    Caillot M, Chaumonnot A, Digne M, Van Bokhoven JA. Creation of Brønsted acidity by grafting aluminum isopropoxide on silica under controlled conditions: determination of the number of Brønsted sites and their turnover frequency for m-Xylene isomerization. ChemCatChem. 2014;6:832–41.CrossRefGoogle Scholar
  24. 24.
    Hensen EJM, Poduval DG, Magusin PCMM, Coumans AE, van Veen JAR. Formation of acid sites in amorphous silica-alumina. J Catal. 2010;269:201–18.CrossRefGoogle Scholar
  25. 25.
    Woolery GL, Kuehl GH, Timken HC, Chester AW, Vartuli JC. On the nature of framework Brønsted and Lewis acid sites in ZSM-5. Zeolites. 1997;19:288–96.CrossRefGoogle Scholar
  26. 26.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  27. 27.
    Cao R, Naya S, Artiaga R, García A, Varela A. Logistic approach to polymer degradation in dynamic TGA. Polym Degrad Stab. 2004;85:667–74.CrossRefGoogle Scholar
  28. 28.
    Barbadillo F, Fuentes A, Naya S, Cao R, Mier JL, Artiaga R. Evaluating the logistic mixture model on real and simulated TG curves. J Therm Anal Calorim. 2007;87:223–7.CrossRefGoogle Scholar
  29. 29.
    Chen HX, Liu NA, Shu LF, Zong RW. Smoothing and differentiation of thermogravimetric data of biomass materials. J Therm Anal Calorim. 2004;78:1029–41.CrossRefGoogle Scholar
  30. 30.
    Zeolite Molecular Sieves: thermal gravimetric analysis (Colby College). 2016. Accessed 29 Feb 2016.
  31. 31.
    Várhegyi G, Chen H, Godoy S. Thermal decomposition of wheat, oat, barley and Brassica carinata straws. A kinetic study. Energy Fuels. 2009;23:646–52.CrossRefGoogle Scholar
  32. 32.
    Várhegyi G, Till F. Computer processing of thermogravimetric-mass spectrometric and high pressure thermogravimetric data. Part 1. Smoothing and differentiation. Thermochim Acta. 1999;329:141–5.CrossRefGoogle Scholar
  33. 33.
    Yu Y, Fu X, Yu L, Liu R, Cai J. Combustion kinetics of pine sawdust biochar. Data smoothing and isoconversional kinetic analysis. J Therm Anal Calorim. 2016;124:1641–9.CrossRefGoogle Scholar
  34. 34.
    Francisco-Fernández M, Tarrío-Saavedra J, Naya S, López-Beceiro J, Artiaga R. Classification of wood using differential thermogravimetric analysis. J Therm Anal Calorim. 2015;120:541–51.CrossRefGoogle Scholar
  35. 35.
    Eagle CD Jr. BNALib—A BASIC numerical analysis library for Personal Computers, ©1997–2002 (by C.D. Eagle Jr., Littleton (CO), USA, Scholar
  36. 36.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  37. 37.
    Criado JM. Kinetic analysis of DTG data from master curves. Thermochim Acta. 1978;24:186–9.CrossRefGoogle Scholar
  38. 38.
    Aboulkas A, El Harfi K, El Bouadili A. Thermal degradation behaviors of polyethylene and polypropylene. Part I: pyrolysis kinetics and mechanisms. Energy Convers Manag. 2010;51:1363–9.CrossRefGoogle Scholar
  39. 39.
    Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.CrossRefGoogle Scholar
  40. 40.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C. 1964;6:183–95.CrossRefGoogle Scholar
  41. 41.
    Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.Google Scholar
  42. 42.
    Capote JA, Alvear D, Abreu O, Lázaro M, Puente E. Pyrolysis characterization of a lineal low density polyethylene. Fire Saf Sci. 2011;10:877–88.CrossRefGoogle Scholar
  43. 43.
    Rajeshwari P, Dey TK. Advanced isoconversional and master plot analyses on non-isothermal degradation kinetics of AlN (nano)-reinforced HDPE composites. J Therm Anal Calorim. 2016;125:369–86.CrossRefGoogle Scholar
  44. 44.
    Carrasco F, Pagès P. Thermogravimetric analysis of polystyrene: influence of sample weight and heating rate on thermal and kinetic parameters. J Appl Polym Sci. 1996;61:187–97.CrossRefGoogle Scholar
  45. 45.
    Stawski D. The effect of sample weight in thermogravimetric analysis of low viscosity polypropylene in air atmosphere. Polym Test. 2009;28:223–5.CrossRefGoogle Scholar
  46. 46.
    Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol JJ. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Gorazd Berčič
    • 1
  • Petar Djinović
    • 2
  • Albin Pintar
    • 2
  1. 1.Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryLjubljanaSlovenia
  2. 2.Department of Environmental Sciences and EngineeringNational Institute of ChemistryLjubljanaSlovenia

Personalised recommendations