Journal of Thermal Analysis and Calorimetry

, Volume 128, Issue 1, pp 627–637 | Cite as

Structural, thermal kinetics and thermodynamics study of new mixed ligand zinc complexes



Two new zinc(II)-2-chlorophenylacetate complexes, {[Zn(2-Cl-C6H4CH2COO)2(Phen)](2-Cl-C6H4CH2COOH)2, 1 and [Zn(2-Cl-C6H4CH2COO)2(bipy)](2-Cl-C6H4CH2COOH)2, 2} with nitrogen donor ligands, 1,10-phenanthroline (phen) and 2,2′-bipyridine (bipy), were synthesized and characterized by IR spectroscopy and single crystal diffraction. Distorted octahedral geometry was confirmed in both complexes. The compounds were studied for the thermal stabilities using TG and DTA methods at different heating rates (283, 288 and 293 K min−1). It was found that both the complexes show the same trend in stabilities and thermally degrade in two stages. The apparent activation energies for each step of specific conversions were determined using the Doyle–Ozawa calculation method according to ICTAC recommendations. The calculated average activation energies for 1 were found to be 17.52/10.19 J mol−1 for the first and second stages of degradation, respectively. Similarly, for 2 corresponding values for the two-stage degradation were found to be 12.45 and 3.485 J mol−1. Determining the enthalpy value of the activation revealed an exergonic nature of the thermal degradation.


Zinc(II) carboxylate Mixed ligand complexes Crystal structure Thermal degradation studies Doyle–Ozawa method Kinetics Thermodynamic studies 


Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Vallee BL, Falchuk KH. The biochemical basis of zinc physiology. Physiol Rev. 1993;73:79–118.Google Scholar
  2. 2.
    Berg JM, Shi Y. Science. 1996;271:1081.CrossRefGoogle Scholar
  3. 3.
    Allendorf MD, Bauer CA, Bhakta RK, Houk RJT. Luminescent metal–organic frameworks. Chem Soc Rev. 2009;38:1330–52.CrossRefGoogle Scholar
  4. 4.
    Lee MH, Quang DT, Jung HS, Yoon J, Lee C-H, Kim JS. Ion-induced FRET on–off in fluorescent Calix[4]arene. J Org Chem. 2007;72:4242–5.CrossRefGoogle Scholar
  5. 5.
    Hirano T, Kikuchi K, Urano Y, Higuchi T, Nagano T. Novel zinc fluorescent probes excitable with visible light for biological applications. Angew Chem Int Ed. 2000;39(6):1052–4.CrossRefGoogle Scholar
  6. 6.
    Komatsu K, Urano Y, Kojima H, Nagano T. Development of an iminocoumarin-based zinc sensor suitable for ratiometric fluorescence imaging of neuronal zinc. J Am Chem Soc. 2007;129:13447–54.CrossRefGoogle Scholar
  7. 7.
    Camur M, Bulut M, Kandaz M, Guney O. Synthesis, characterization and fluorescence behavior of new fluorescent probe phthalocyanines bearing coumarin substituents. Polyhedron. 2009;28:233–8.CrossRefGoogle Scholar
  8. 8.
    Li H, Gao S, Xi Z. A colorimetric and “turn-on” fluorescent chemosensor for Zn(II) based on coumarin Shiff-base derivative. Inorg Chem Commun. 2009;12:300–3.CrossRefGoogle Scholar
  9. 9.
    Ikram M, Rehman S, Khan A, Baker RJ, Hofer TS, Subhan F, Qayum M, Schulzke C. Synthesis, characterization, antioxidant and selective xanthine oxidase inhibitory studies of transition metal complexes of novel amino acid bearing Schiff base ligand. Inorg Chim Acta. 2015;428:117–26.CrossRefGoogle Scholar
  10. 10.
    Medintz IL, Mattoussi H, Clapp AR. Potential clinical applications of quantum dots. Int J Nanomed. 2008;3:151–67.Google Scholar
  11. 11.
    Choulier L, Enander K. Environmentally sensitive fluorescent sensors based on synthetic peptides. Sensors. 2010;10:3126–44.CrossRefGoogle Scholar
  12. 12.
    Tainaka K, Sakaguchi R, Hayashi H, Nakano S, Liew FF, Morii T. Design strategies of fluorescent biosensors based on biological macromolecular receptors. Sensors. 2010;10:1355–76.CrossRefGoogle Scholar
  13. 13.
    Morris MC. Fluorescent biosensors of intracellular targets from genetically encoded reporters to modular polypeptide probes. Cell Biochem Biophys. 2010;56:19–37.CrossRefGoogle Scholar
  14. 14.
    Ojida A, Mito-oka Y, Sada K, Hamachi I. Molecular recognition and fluorescence sensing of monophosphorylated peptides in aqueous solution by bis(zinc(II)–dipicolylamine)-based artificial receptors. J Am Chem Soc. 2004;126:2454–63.CrossRefGoogle Scholar
  15. 15.
    Ojida A, Inoue MA, Mito-Oka Y, Hamachi I. Cross-linking strategy for molecular recognition and fluorescent sensing of a multi-phosphorylated peptide in aqueous solution. J Am Chem Soc. 2003;125:10184–5.CrossRefGoogle Scholar
  16. 16.
    Li JV, Johnston SW, Yan Y, Levi DH. A high-efficiency spin-resolved photoemission spectrometer combining time-of-flight spectroscopy with exchange-scattering polarimetry. Rev Sci Instrum. 2010;81:033910–5.CrossRefGoogle Scholar
  17. 17.
    Sheldrick GM. A short history of SHELX. Acta Crystallogr Sect A. 2008;64:112–22.CrossRefGoogle Scholar
  18. 18.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.CrossRefGoogle Scholar
  19. 19.
    Deacon GB, Philips RJ. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev. 1980;33:227–50.CrossRefGoogle Scholar
  20. 20.
    Yang CT, Vetricheran M, Yang X, Moubaraki B, Murry KS, Vittal JJ. Syntheses, structural properties and catecholase activity of copper(II) complexes with reduced Schiff base N-(2-hydroxybenzyl)-amino acids. J Chem Soc Dalton Trans. 2004;113.Google Scholar
  21. 21.
    Gup R, Gökçe C, Dilek N. Synthesis, structural characterization and DNA interaction of zinc complex from 2,6-diacetylpyridine dihydrazone and 4-[(2E)-2-(hydroxyimino)acetyl]phenoxy acetic acid. J Photochem & Photobio B Biol. 2015;144:42–50.CrossRefGoogle Scholar
  22. 22.
    Carballo R, Castineiras A, Balboa S, Covelo B, Niclos J. Solid state coordination chemistry of copper(II)/α-hydroxycarboxylato/2,2′-bipyridine systems. Polyhedron. 2002;21:2811–8.CrossRefGoogle Scholar
  23. 23.
    Galani A, Efthimiadou EK, Theodosiou T, Kordas G, Karaliota A. Novel levofloxacin zinc (II) complexes with N-donor heterocyclic ligands, as potential fluorescent probes for cell imaging: synthesis, structural characterization and in vitro cytotoxicity. Inorg Chim Acta. 2014;423:52–9.CrossRefGoogle Scholar
  24. 24.
    Qi XX, Ren N, Xu SL, Zhang JJ, Zong GC, Gao J, Geng LN, Wang SP, Shi SK. Lanthanide complexes with 3,4,5-triethoxybenzoic acid and 1,10-phenanthroline: synthesis, crystal structures, thermal decomposition mechanism and phase transformation kinetics. RSC Adv. 2015;5:9261–71.CrossRefGoogle Scholar
  25. 25.
    Zong GC, Huo JX, Ren N, Zhang JJ, Qi XX, Gao J, Geng LN, Wang SP, Shi SK. Preparation, characterization and properties of four new trivalent lanthanide complexes constructed using 2-bromine-5-methoxybenzoicacid and 1,10-phenanthroline. Dalton Trans. 2015;44:14877–86.CrossRefGoogle Scholar
  26. 26.
    Mohamed SK, Knight KS, Akkurt M, Hussein BRM, Albayati MR. Crystal structure of N-[4-amino-5-cyano-6-(methylsulfanyl)pyridin-2-yl]-2-chloroacetamide. Acta Cryst. 2015;E71:o169–70.Google Scholar
  27. 27.
    Deya D, Roya S, Dutta Purkayastha RN, Pallepogub R, McArdlec P. Zinc carboxylates containing diimine: synthesis, characterization, crystal structure, and luminescence. J Mol Struct. 2013;1053:127–33.CrossRefGoogle Scholar
  28. 28.
    Ikram M, Rehman S, Baker RJ, Rehman HU, Khan A, Choudhary MI, Rehman S-U. Synthesis, and distinct urease enzyme inhibitory activities of metal complexes of Schiff-base ligands: kinetic and thermodynamic parameters evaluation from TG DTA analysis. Thermochim Acta. 2013;555:72–80.CrossRefGoogle Scholar
  29. 29.
    Ikram M, Rehman S, Schulzke C, Baker RJ, Blake AJ, Malook K, Wong H, Rehman S-U. Urease and α-chymotrypsin inhibitory activities of transition metal complexes of new Schiff base ligand: kinetic and thermodynamic studies of the synthesized complexes using TG DTA pyrolysis. Thermochim Acta. 2013;562C:22–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Department of ChemistryAbdul Wali Khan UniversityMardanPakistan
  2. 2.Institut für BiochemieErnst-Moritz-Arndt Universität GreifswaldGreifswaldGermany

Personalised recommendations