Skip to main content
Log in

Structural, thermal kinetics and thermodynamics study of new mixed ligand zinc complexes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

An Erratum to this article was published on 02 November 2016

Abstract

Two new zinc(II)-2-chlorophenylacetate complexes, {[Zn(2-Cl-C6H4CH2COO)2(Phen)](2-Cl-C6H4CH2COOH)2, 1 and [Zn(2-Cl-C6H4CH2COO)2(bipy)](2-Cl-C6H4CH2COOH)2, 2} with nitrogen donor ligands, 1,10-phenanthroline (phen) and 2,2′-bipyridine (bipy), were synthesized and characterized by IR spectroscopy and single crystal diffraction. Distorted octahedral geometry was confirmed in both complexes. The compounds were studied for the thermal stabilities using TG and DTA methods at different heating rates (283, 288 and 293 K min−1). It was found that both the complexes show the same trend in stabilities and thermally degrade in two stages. The apparent activation energies for each step of specific conversions were determined using the Doyle–Ozawa calculation method according to ICTAC recommendations. The calculated average activation energies for 1 were found to be 17.52/10.19 J mol−1 for the first and second stages of degradation, respectively. Similarly, for 2 corresponding values for the two-stage degradation were found to be 12.45 and 3.485 J mol−1. Determining the enthalpy value of the activation revealed an exergonic nature of the thermal degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Scheme 2
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vallee BL, Falchuk KH. The biochemical basis of zinc physiology. Physiol Rev. 1993;73:79–118.

    CAS  Google Scholar 

  2. Berg JM, Shi Y. Science. 1996;271:1081.

    Article  CAS  Google Scholar 

  3. Allendorf MD, Bauer CA, Bhakta RK, Houk RJT. Luminescent metal–organic frameworks. Chem Soc Rev. 2009;38:1330–52.

    Article  CAS  Google Scholar 

  4. Lee MH, Quang DT, Jung HS, Yoon J, Lee C-H, Kim JS. Ion-induced FRET on–off in fluorescent Calix[4]arene. J Org Chem. 2007;72:4242–5.

    Article  CAS  Google Scholar 

  5. Hirano T, Kikuchi K, Urano Y, Higuchi T, Nagano T. Novel zinc fluorescent probes excitable with visible light for biological applications. Angew Chem Int Ed. 2000;39(6):1052–4.

    Article  CAS  Google Scholar 

  6. Komatsu K, Urano Y, Kojima H, Nagano T. Development of an iminocoumarin-based zinc sensor suitable for ratiometric fluorescence imaging of neuronal zinc. J Am Chem Soc. 2007;129:13447–54.

    Article  CAS  Google Scholar 

  7. Camur M, Bulut M, Kandaz M, Guney O. Synthesis, characterization and fluorescence behavior of new fluorescent probe phthalocyanines bearing coumarin substituents. Polyhedron. 2009;28:233–8.

    Article  CAS  Google Scholar 

  8. Li H, Gao S, Xi Z. A colorimetric and “turn-on” fluorescent chemosensor for Zn(II) based on coumarin Shiff-base derivative. Inorg Chem Commun. 2009;12:300–3.

    Article  CAS  Google Scholar 

  9. Ikram M, Rehman S, Khan A, Baker RJ, Hofer TS, Subhan F, Qayum M, Schulzke C. Synthesis, characterization, antioxidant and selective xanthine oxidase inhibitory studies of transition metal complexes of novel amino acid bearing Schiff base ligand. Inorg Chim Acta. 2015;428:117–26.

    Article  CAS  Google Scholar 

  10. Medintz IL, Mattoussi H, Clapp AR. Potential clinical applications of quantum dots. Int J Nanomed. 2008;3:151–67.

    CAS  Google Scholar 

  11. Choulier L, Enander K. Environmentally sensitive fluorescent sensors based on synthetic peptides. Sensors. 2010;10:3126–44.

    Article  CAS  Google Scholar 

  12. Tainaka K, Sakaguchi R, Hayashi H, Nakano S, Liew FF, Morii T. Design strategies of fluorescent biosensors based on biological macromolecular receptors. Sensors. 2010;10:1355–76.

    Article  CAS  Google Scholar 

  13. Morris MC. Fluorescent biosensors of intracellular targets from genetically encoded reporters to modular polypeptide probes. Cell Biochem Biophys. 2010;56:19–37.

    Article  CAS  Google Scholar 

  14. Ojida A, Mito-oka Y, Sada K, Hamachi I. Molecular recognition and fluorescence sensing of monophosphorylated peptides in aqueous solution by bis(zinc(II)–dipicolylamine)-based artificial receptors. J Am Chem Soc. 2004;126:2454–63.

    Article  CAS  Google Scholar 

  15. Ojida A, Inoue MA, Mito-Oka Y, Hamachi I. Cross-linking strategy for molecular recognition and fluorescent sensing of a multi-phosphorylated peptide in aqueous solution. J Am Chem Soc. 2003;125:10184–5.

    Article  CAS  Google Scholar 

  16. Li JV, Johnston SW, Yan Y, Levi DH. A high-efficiency spin-resolved photoemission spectrometer combining time-of-flight spectroscopy with exchange-scattering polarimetry. Rev Sci Instrum. 2010;81:033910–5.

    Article  Google Scholar 

  17. Sheldrick GM. A short history of SHELX. Acta Crystallogr Sect A. 2008;64:112–22.

    Article  CAS  Google Scholar 

  18. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  19. Deacon GB, Philips RJ. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev. 1980;33:227–50.

    Article  CAS  Google Scholar 

  20. Yang CT, Vetricheran M, Yang X, Moubaraki B, Murry KS, Vittal JJ. Syntheses, structural properties and catecholase activity of copper(II) complexes with reduced Schiff base N-(2-hydroxybenzyl)-amino acids. J Chem Soc Dalton Trans. 2004;113.

  21. Gup R, Gökçe C, Dilek N. Synthesis, structural characterization and DNA interaction of zinc complex from 2,6-diacetylpyridine dihydrazone and 4-[(2E)-2-(hydroxyimino)acetyl]phenoxy acetic acid. J Photochem & Photobio B Biol. 2015;144:42–50.

    Article  CAS  Google Scholar 

  22. Carballo R, Castineiras A, Balboa S, Covelo B, Niclos J. Solid state coordination chemistry of copper(II)/α-hydroxycarboxylato/2,2′-bipyridine systems. Polyhedron. 2002;21:2811–8.

    Article  CAS  Google Scholar 

  23. Galani A, Efthimiadou EK, Theodosiou T, Kordas G, Karaliota A. Novel levofloxacin zinc (II) complexes with N-donor heterocyclic ligands, as potential fluorescent probes for cell imaging: synthesis, structural characterization and in vitro cytotoxicity. Inorg Chim Acta. 2014;423:52–9.

    Article  CAS  Google Scholar 

  24. Qi XX, Ren N, Xu SL, Zhang JJ, Zong GC, Gao J, Geng LN, Wang SP, Shi SK. Lanthanide complexes with 3,4,5-triethoxybenzoic acid and 1,10-phenanthroline: synthesis, crystal structures, thermal decomposition mechanism and phase transformation kinetics. RSC Adv. 2015;5:9261–71.

    Article  CAS  Google Scholar 

  25. Zong GC, Huo JX, Ren N, Zhang JJ, Qi XX, Gao J, Geng LN, Wang SP, Shi SK. Preparation, characterization and properties of four new trivalent lanthanide complexes constructed using 2-bromine-5-methoxybenzoicacid and 1,10-phenanthroline. Dalton Trans. 2015;44:14877–86.

    Article  CAS  Google Scholar 

  26. Mohamed SK, Knight KS, Akkurt M, Hussein BRM, Albayati MR. Crystal structure of N-[4-amino-5-cyano-6-(methylsulfanyl)pyridin-2-yl]-2-chloroacetamide. Acta Cryst. 2015;E71:o169–70.

    Google Scholar 

  27. Deya D, Roya S, Dutta Purkayastha RN, Pallepogub R, McArdlec P. Zinc carboxylates containing diimine: synthesis, characterization, crystal structure, and luminescence. J Mol Struct. 2013;1053:127–33.

    Article  Google Scholar 

  28. Ikram M, Rehman S, Baker RJ, Rehman HU, Khan A, Choudhary MI, Rehman S-U. Synthesis, and distinct urease enzyme inhibitory activities of metal complexes of Schiff-base ligands: kinetic and thermodynamic parameters evaluation from TG DTA analysis. Thermochim Acta. 2013;555:72–80.

    Article  CAS  Google Scholar 

  29. Ikram M, Rehman S, Schulzke C, Baker RJ, Blake AJ, Malook K, Wong H, Rehman S-U. Urease and α-chymotrypsin inhibitory activities of transition metal complexes of new Schiff base ligand: kinetic and thermodynamic studies of the synthesized complexes using TG DTA pyrolysis. Thermochim Acta. 2013;562C:22–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Niaz Muhammad or Muhammad Ikram.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

The original version of this article was revised. The fourth and fifth author names were combined and published as Mohammad Ibrahim Viola. The correct author group is updated in the article.

An erratum to this article is available at http://dx.doi.org/10.1007/s10973-016-5916-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad, N., Ikram, M., Rehman, S. et al. Structural, thermal kinetics and thermodynamics study of new mixed ligand zinc complexes. J Therm Anal Calorim 128, 627–637 (2017). https://doi.org/10.1007/s10973-016-5842-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5842-7

Keywords

Navigation