Journal of Thermal Analysis and Calorimetry

, Volume 128, Issue 1, pp 107–113 | Cite as

Influence of variation in the silicon content on the silicon precipitation in the Al–Si binary system

  • Yu-Mi Kim
  • Da-Som Kang
  • Sung-Kil Hong
  • Young-Chan Kim
  • Chang-Seog Kang
  • Se-Weon Choi


Silicon is a base element used to cast aluminum alloys, and the properties of an Al–Si alloy can be controlled by adjusting the casting and heat treatment parameters. The influence was investigated that the silicon content of Al–Si alloys on the silicon precipitation rate. Silicon was added to pure commercial aluminum at 0.8, 1.5, 3.0, 6.5, and 9.5 mass%, and then, samples were produced through casting. The specimens were solid solution treatment for 10 h at 803 K and were analyzed using a thermomechanical apparatus and differential scanning calorimetry to determine the change of exothermic reaction and the coefficient of thermal expansion (CTE) according to the silicon content in aluminum alloys. The heat flow curve showed an exothermic reaction resulting from silicon precipitation in the matrix, dissolving in the matrix during the solid solution treatment. The CTE curve also indicated silicon precipitation, and the peak value of the CTE reflected the change in temperature at which the silicon precipitation had occurred according the silicon content in the aluminum alloy. The rate of the silicon precipitation appeared to be proportional to the silicon content in the aluminum alloy since the silicon content induced changes in the microstructure of the aluminum alloy and thereby affecting the silicon precipitation kinetics.


Aluminum–silicon alloys Silicon precipitation Precipitation enthalpy Thermal expansion coefficient Thermal analysis 


  1. 1.
    Zolotorevsky VS, Belov NA, Glazoff MV. Casting aluminum alloys. Elsevier; 2010.Google Scholar
  2. 2.
    Davis JR. Aluminum and aluminum alloys. ASM international; 1993.Google Scholar
  3. 3.
    Mondolfo LF. Aluminum alloys: structure and properties. Elsevier; 2013.Google Scholar
  4. 4.
    Tański T, Labisz K, Krupińska B, Krupiński M, Król M, Maniara R, et al. Analysis of crystallization kinetics of cast aluminum–silicon alloy. J Therm Anal Calorim. 2016;123:63–74.CrossRefGoogle Scholar
  5. 5.
    Kattner UR, Massalski TB. Binary alloy phase diagrams. Materials Park, OH: ASM International; 1990. p. 148.Google Scholar
  6. 6.
    Murray JL, McAlister AJ. The Al–Si (aluminum–silicon) system. Bull Alloy Phase Diagr. 1984;5:74–84.CrossRefGoogle Scholar
  7. 7.
    Schumacher P, Pogatscher S, Starink MJ, Schick C, Mohles V, Milkereit B. Quench-induced precipitates in Al–Si alloys: calorimetric determination of solute content and characterisation of microstructure. Thermochim Acta. 2015;602:63–73.CrossRefGoogle Scholar
  8. 8.
    Lasagni F, Mingler B, Dumont M, Degischer HP. Precipitation kinetics of Si in aluminium alloys. Mater Sci Eng A. 2008;480:383–91.CrossRefGoogle Scholar
  9. 9.
    van Rooyen M, Mittemeijer EJ. Precipitation of silicon in aluminum–silicon: a calorimetric analysis of liquid-quenched and solid- quenched alloys. Metall Trans A. 1989;20:1207–14.CrossRefGoogle Scholar
  10. 10.
    Rosenbaum HS, Turnbull D. Metallographic investigation of precipitation of silicon from aluminum. Acta Metall. 1959;7:664–74.CrossRefGoogle Scholar
  11. 11.
    Starink MJ. Analysis of aluminium based alloys by calorimetry: quantitative analysis of reactions and reaction kinetics. Int Mater Rev. 2004;49:191–226.CrossRefGoogle Scholar
  12. 12.
    Starink MJ, Zahra A-M. Kinetics of isothermal and non-isothermal precipitation in an Al-6 at.% Si alloy. Philos Mag A. 1998;77:187–99.CrossRefGoogle Scholar
  13. 13.
    Brown ME, Gallagher PK. Handbook of thermal analysis and calorimetry: recent advances, techniques and applications. Elsevier; 2011.Google Scholar
  14. 14.
    Rosenbaum HS, Turnbull D. On the precipitation of silicon out of a supersaturated aluminum–silicon solid solution. Acta Metall. 1958;6:653–9.CrossRefGoogle Scholar
  15. 15.
    van Mourik P, de Keijser TH, Mittemeijer EJ. Kinetics of precipitation and of relaxation of precipitation-induced stresses in aluminium–silicon alloys. Scr Metall. 1987;21:381–5.CrossRefGoogle Scholar
  16. 16.
    Segers D, van Mourik P, van Wijngaarden MH, Rao BM. Precipitation of silicon in a solid quenched aluminium–silicon (1.3 at.%) alloy studied by positron annihilation BY. Phys Status Solidi. 1984;209:209–16.CrossRefGoogle Scholar
  17. 17.
    Rometsch PA, Starink MJ, Gregson PJ. Improvements in quench factor modelling. Mater Sci Eng A. 2003;339:255–64.CrossRefGoogle Scholar
  18. 18.
    Abbaschian R, Abbaschian L, Reed-Hill RE. Physical metallurgy principles. New York: Van Nostrand; 1973.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Yu-Mi Kim
    • 1
    • 2
  • Da-Som Kang
    • 1
    • 2
  • Sung-Kil Hong
    • 1
  • Young-Chan Kim
    • 2
  • Chang-Seog Kang
    • 2
  • Se-Weon Choi
    • 2
  1. 1.Shool of Materials Science & EngineeringChonnam National UniversityGwangjuRepublic of Korea
  2. 2.Korea Institute of Industrial TechnologyGwangjuRepublic of Korea

Personalised recommendations