Journal of Thermal Analysis and Calorimetry

, Volume 127, Issue 3, pp 2101–2112 | Cite as

Preparation of modified hollow glass microspheres using Fe2O3 and its flame retardant properties in thermoplastic polyurethane

  • Chuanmei Jiao
  • Li Zhao
  • Xilei Chen


In this paper, the hollow glass microspheres coated with Fe2O3 (HGM-Fe2O3) were synthesized and characterized by scanning electron microscopy (SEM–EDS) and X-ray photoemission spectroscopy, respectively. Then, the flame retardant and smoke suppression properties of HGM-Fe2O3 in thermoplastic polyurethane (TPU) composites have been investigated intensively using several methods, including cone calorimeter test (CCT), smoke density test (SDT), scanning electron microscopy, and thermogravimetric analysis/infrared spectrometry. The CCT results showed that HGM-Fe2O3 can greatly enhance the flame retardance of polymer matrix materials compared with TPU. For example, HGM-Fe2O3 can reduce heat release rate, total heat release, and smoke release of TPU composites in the combustion process. The SDT results showed that HGM-Fe2O3 can effectively decrease the amount of smoke production in the test. Furthermore, the TG results indicate that HGM-Fe2O3 can decrease the initial decomposition temperature, and change the structure of char residue layer.


Hollow glass microspheres Fe2O3 Thermoplastic polyurethane Flame retardant 



The authors gratefully acknowledge the National Natural Science Foundation of China (No. 51106078, No. 51206084), the University Research and Development Projects Shandong Province (J14LA13), and the Major Special Projects of Science and Technology from Shandong Province (2015ZDZX11011).


  1. 1.
    Bocz K, Bárány T, Toldy A, Bodzay B, Csontos I, Madi K, Marosi G. Self-extinguishing polypropylene with a mass fraction of 9% intumescent additive—a new physical way for enhancing the fire retardant efficiency. Polym Degrad Stab. 2013;98:79–86.CrossRefGoogle Scholar
  2. 2.
    Li X, Yang B. Synergistic effects of pentaerythritol phosphate nickel salt (PPNS) with ammonium polyphosphate in flame retardant of polyethylene. J Therm Anal Calorim. 2015;122:359–68.CrossRefGoogle Scholar
  3. 3.
    Deodhar S, Shanmuganathan K, Fan Q, Wilkie CA, Costache MC, Dembsey NA, Patra PK. Calcium carbonate and ammonium polyphosphate-based flame retardant composition for polypropylene. J Appl Polym Sci. 2011;120:1866–73.CrossRefGoogle Scholar
  4. 4.
    Chen XL, Ma CY, Jiao CM. Synergistic effects between iron-graphene and ammonium polyphosphate in flame-retardant thermoplastic polyurethane. J Therm Anal Calorim. 2016. doi: 10.1007/s10973-016-5494-7.Google Scholar
  5. 5.
    Wang W. Fabrication of carbon black coated flexible polyurethane foam for significantly improved fire safety. RSC Adv. 2015;5:55870–8.CrossRefGoogle Scholar
  6. 6.
    Tabuani D, Bellucci F, Terenzi A, Camino G. Flame retarded thermoplastic polyurethane (TPU) for cable jacketing application. Polym Degrad Stab. 2012;97:2594–601.CrossRefGoogle Scholar
  7. 7.
    Chen XL, Zhuo JL, Jiao CM. Thermal degradation characteristics of flame retardant polylactide using TG-IR. Polym Degrad Stab. 2012;97:2143–7.CrossRefGoogle Scholar
  8. 8.
    Apaydin K, Laachachi A, Ball V, Jimenez M, Bourbigot S, Toniazzo V, Ruch D. Polyallylamine–montmorillonite as super flame retardant coating assemblies by layer-by layer deposition on polyamide. Polym Degrad Stab. 2013;98:627–34.CrossRefGoogle Scholar
  9. 9.
    Chen Y, Peng H, Li J, Xia Z, Tan H. A novel flame retardant containing phosphorus, nitrogen, and sulfur. J Therm Anal Calorim. 2014;115:1639–49.CrossRefGoogle Scholar
  10. 10.
    Chen L, Wang YZ. A review on flame retardant technology in China. Part I: development of flame retardants. Polym Adv Technol. 2009;21:1–26.Google Scholar
  11. 11.
    Wang N, Xu G, Wu Y, et al. The influence of expandable graphite on double-layered microcapsules in intumescent flame-retardant natural rubber composites. J Therm Anal Calorim. 2015;123:1–13.Google Scholar
  12. 12.
    Hsiue GH, Liu YL, Tsiao J. Phosphorus-containing epoxy resins for flame retardancy V: synergistic effect of phosphorus–silicon on flame retardancy. J Appl Polym Sci. 2000;78:1–7.CrossRefGoogle Scholar
  13. 13.
    Serge B, Verhart DL, Gilman JW, Awad WH, Davis RD, Morgan AB, Wilkie CA. Investigation of nanodispersion in polystyrene–montmorillonite nanocomposites by solid-state NMR. J Polym Sci Polym Phys. 2003;41:3188–213.Google Scholar
  14. 14.
    Lin M, Li B, Li Q, Li S, Zhang S. Synergistic effect of metal oxides on the flame retardancy and thermal degradation of novel intumescent flame-retardant thermoplastic polyurethanes. J Appl Polym Sci. 2011;121:1951–60.CrossRefGoogle Scholar
  15. 15.
    Tidjani A, Wilkie CA. Photo-oxidation of polymeric-inorganic nanocomposites: chemical, thermal stability and fire retardancy investigations. Polym Degrad Stab. 2001;74:33–7.CrossRefGoogle Scholar
  16. 16.
    Dalai S, Vijayalakshmi S, Shrivastava P, Sivam SP, Sharma P. Preparation and characterization of hollow glass microspheres (HGMs) for hydrogen storage using urea as a blowing agent. Microelectron Eng. 2014;126:65–70.CrossRefGoogle Scholar
  17. 17.
    Liu L, Hu J, Zhuo JL, Jiao CM, Chen XL, Li SX. Synergistic flame retardant effects between hollow glass microspheres and magnesium hydroxide in ethylene-vinyl acetate composites. Polym Degrad Stab. 2014;104:87–94.CrossRefGoogle Scholar
  18. 18.
    Sun L, Qu Y, Li S. Co-microencapsulate of ammonium polyphosphate and pentaerythritol in intumescent flame-retardant coatings. J Therm Anal Calorim. 2012;111:1099–106.CrossRefGoogle Scholar
  19. 19.
    Devi RR, Maji TK. In situ polymerized wood polymer composite: effect of additives and nanoclay on the thermal, mechanical properties. Mater Res. 2013;16:954–63.CrossRefGoogle Scholar
  20. 20.
    Chen XL, Jiang YF, Jiao CM. Synergistic effects between hollow glass microsphere and ammonium polyphosphate on flame-retardant thermoplastic polyurethane. J Therm Anal Calorim. 2014;117:857–66.CrossRefGoogle Scholar
  21. 21.
    Bentjen SB, Nelson DA, Tarasevich BJ, Rieke PC. The introduction of alkyl, ester, carboxylate, amino, hydroxyl, and phosphate functional groups to the surface of polyethylene. J Appl Polym Sci. 1992;44:965–80.CrossRefGoogle Scholar
  22. 22.
    You Z, Liu GS, Jian-Xin DU. Influencing mechanism of transition metal oxide on thermal decomposition of ammonium polyphosphate. Chin J Inorg Chem. 2013;29:1115–22.Google Scholar
  23. 23.
    Carty P, Docherty A. Iron-containing compounds as flame retarding/smoke-suppressing additives for PVC. Fire Mater. 1988;12:109–13.CrossRefGoogle Scholar
  24. 24.
    Du SL, Lin XB, Jian RKM, Deng C, Wang YZ. Flame-retardant wrapped ramie fibers towards suppressing “candlewick effect” of polypropylene/ramie fiber composites. Chin J Polym Sci. 2014;33:84–94.CrossRefGoogle Scholar
  25. 25.
    Carty P, White S. The effect of temperature on char formation in polymer blends: an explanation of the role of the smoke suppressant FeOOH acting in ABS/CPVC polymer blends. Polym Degrad Stab. 2002;75:173–84.CrossRefGoogle Scholar
  26. 26.
    Peng HQ, Zhou Q, Wang DY, Chen L, Wang YZ. A novel charring agent containing caged bicyclic phosphate and its application in intumescent flame retardant polypropylene systems. J Ind Eng Chem. 2008;14:589–95.CrossRefGoogle Scholar
  27. 27.
    Zhou K. Synergetic effect of ferrocene and MoS2 in polystyrene composites with enhanced thermal stability, flame retardant and smoke suppression properties. RSC Adv. 2014;4:13205–14.CrossRefGoogle Scholar
  28. 28.
    Chen XL, Jiang YF, Jiao CM. Smoke suppression properties of ferrite yellow on flame retardant thermoplastic polyurethane based on ammonium polyphosphate. J Hazard Mater. 2014;266:114–21.CrossRefGoogle Scholar
  29. 29.
    Ricciardi MR, Antonucci V, Zarrelli M, Giordano M. Fire behavior and smoke emission of phosphate-based inorganic fire-retarded polyester resin. Fire Mater. 2012;36:203–15.CrossRefGoogle Scholar
  30. 30.
    Duquesne S, Bras ML, Bourbigot S, Delobel R, Camino G, Eling B, Lindsay C, Roels T. Thermal degradation of polyurethane and polyurethane/expandable graphite coatings. Polym Degrad Stab. 2001;74:493–9.CrossRefGoogle Scholar
  31. 31.
    Gui H. Synergistic effect of graphene and an ionic liquid containing phosphonium on the thermal stability and flame retardancy of polylactide. RSC Adv. 2015;5:27814–22.CrossRefGoogle Scholar
  32. 32.
    Marney DCO, Russell LJ, Mann R. Fire performance of wood (Pinus radiata) treated with fire retardants and a wood preservative. Fire Mater. 2008;32:357–70.CrossRefGoogle Scholar
  33. 33.
    Zhao L. Novel tough and thermally stable cyanate ester resins with high flame retardancy, low dielectric loss and constant based on a phenolphthalein type polyarylether sulfone. RSC Adv. 2015;5:58989–9002.CrossRefGoogle Scholar
  34. 34.
    Schartel B, Hull TR. Development of fire-retarded materials—interpretation of cone calorimeter data. Fire Mater. 2007;31:327–54.CrossRefGoogle Scholar
  35. 35.
    Yang H, Song L, Tai Q, Wang X, Yu B, Yuan Y, Hu Y, Yuen RKK. Comparative study on the flame retarded efficiency of melamine phosphate, melamine phosphite and melamine hypophosphite on poly(butylene succinate) composites. Polym Degrad Stab. 2014;105:248–56.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.College of Environment and Safety EngineeringQingdao University of Science and TechnologyQingdaoPeople’s Republic of China

Personalised recommendations