Journal of Thermal Analysis and Calorimetry

, Volume 127, Issue 2, pp 1291–1306 | Cite as

Experimental investigations of thermal stability of some morpholinecarbamic acid complexes of copper(II) and zinc(II)

  • Shashi B. Kalia
  • Rajesh Kumar
  • Monika Bharti
  • J. Christopher


Some new carbamates, viz. M(MorphcbmH)2X2 (MorphcbmH = morpholinecarbamic acid, M = Cu, X = Cl, ClO4,NO3; M = Zn, X = Cl, ClO4, NO3, CH3COO and X2 = SO4), have been synthesized and investigated. Compounds were characterized by elemental analysis, molar conductance, FT infrared, fluorescence, NMR (1H and 13C) and solution electronic absorption spectral studies. Room temperature field-dependent magnetic susceptibility measurements, PXRD spectral and cyclic voltametric studies were also conducted. Chelating bidentate mode of coordination of ligand, MorphcbmH with four coordination around metal ion has been proposed. Ligand and its compounds have also been studied using non-isothermal thermogravimetric analysis and differential scanning calorimetric analytical techniques which inferred formation of metal oxide/MCO3 as final thermal decomposition products. Compounds were screened against the lipase enzyme for assaying their enzyme activity and were found to retard the lipase activity from 48.16 to 0.044 µmol mL−1 min−1.


Morpholinecarbamic acid (MorphcbmH) Copper(II) Zinc(II) TG/DSC Fluorescence spectroscopy Cyclic voltammetry 


  1. 1.
    Ali RMA, Mohsen R, Parisa N. Solvent-free preparation of primary carbamates. Turk J Chem. 2006;30:269–76.Google Scholar
  2. 2.
    Dibenedetto A, Aresta M, Fragale C, Narracci M. Reaction of silylalkylmono-and silylalkyldi-amines with carbon dioxide: evidence of formation of inter-and intramolecular ammonium carbamates and their conversion into organic carbamate of industrial interest under carbon dioxide catalysis. Green Chem. 2002;4:439–43.CrossRefGoogle Scholar
  3. 3.
    Gupte SP, Shivarkar AB, Chaudhari RV. Carbamate synthesis by solid-base catalyzed reaction of disubstituted ureas and carbonates. J Chem Soc Chem Commun. 2001;24:2620–1.CrossRefGoogle Scholar
  4. 4.
    Thompson A. Pest control on field vegetables threatened by the loss of organophosphorus (OP) and carbamate insecticides. Pestic Outlook. 2002;13:84–6.CrossRefGoogle Scholar
  5. 5.
    Martin LL, Davis L, Klein JT, Nemoto P, Olsen GE, Bores GM, Camacho F, Petko WW, Rush DK, Selk D, Smith CP, Vargas HM, Wilson JT, Effland RC, Fink DM. Synthesis and preliminary structure-activity relationships of 1-[(3-fluoro-4-pyridinyl)amino]-3-methyl-1H-indol-5-yl methyl carbamate (P10358), a novel acetylcholinesterase inhibitor. Bioorg Med Chem Lett. 1997;7:157–62.CrossRefGoogle Scholar
  6. 6.
    Daly NJ, Ziolkowski F. The thermal decompositions of carbamates. IV. The ethyl N-methyl-carbamate system. Int J Chem Kinet. 1980;12:241–52.CrossRefGoogle Scholar
  7. 7.
    Kim CK, Kim DJ, Zhang H, Hsieh Y-H, Lee B-S, Lee HW, Kim CK. Substituent effects on the gas-phase pyrolyses of 2-substituted ethyl N,N-dialkylcarbamates: a theoretical study. Bull Korean Chem Soc. 2007;28:1031–4.CrossRefGoogle Scholar
  8. 8.
    Kalia SB, Sankhyan P, Puri R, Christopher J. Thermoanalytical behaviour of carbaryl and its copper(II) and zinc(II) complexes. J Therm Anal Calorim. 2012;107(2):597–605.CrossRefGoogle Scholar
  9. 9.
    Kalia SB, Kumar D, Sharma M, Christopher J. Physico-chemical investigations and thermal degradation behaviour of 4-ethylpiperazine-1-carbodithioic acid complexes of cobalt(II). J Therm Anal Calorim. 2015;120:1099–106.CrossRefGoogle Scholar
  10. 10.
    Amico DBL, Calderazzo F, Labella L, Marchetti F, Pampatoni G. Converting carbon dioxide into carbamato derivatives. Chem Rev. 2003;103:3857–97.CrossRefGoogle Scholar
  11. 11.
    Chisholm MH, Extine M. Reactions of transition metal-nitrogen σ-bonds. 3. Early transition metal N,N-dimethylcarbamates. Preparation, properties and carbon dioxide exchange reactions. J Am Chem Soc. 1977;99:782–92.CrossRefGoogle Scholar
  12. 12.
    Yan H, Zhong C, Zhou Y, Zhang H. Synthesis and luminescent properties of novel Cu(II), Zn(II) polymeric complexes based on 1,10-phenanthroline and biphenyl groups. J Chem Sci. 2009;121:407–12.CrossRefGoogle Scholar
  13. 13.
    Onal Z, Zengin H, Sonmez M. Synthesis, characterization, and photoluminescence properties of Cu(II), Co(II), Ni(II), and Zn(II) complexes of N-aminopyrimidine-2-thione. Turk J Chem. 2011;35:905–14.Google Scholar
  14. 14.
    Nikolov GS. Correlations between spectroscopic data por diethyldithiocarbamate complexes. Inorg Nucl Chem Lett. 1971;7:1213–7.CrossRefGoogle Scholar
  15. 15.
    Kumar S, Kaushik NK. Titanium(IV) and zirconium(IV) dithiocarbamates. Synth React Inorg Met Org Chem. 1982;12(2):159.CrossRefGoogle Scholar
  16. 16.
    Hofmann H. Adv Nanomater 2011;18–40.Google Scholar
  17. 17.
    Tang Y, Kassel SW, Zakharov NL, Rheingold AL, Kemp AP. Insertion reactions of carbon dioxide into Zn–N bonds: syntheses and structures of tetrameric and dimeric alkylzinc carbamato complexes. Inorg Chem. 2005;44:359.CrossRefGoogle Scholar
  18. 18.
    Goldstein GI, Newbury DE, Echlin P, Joy DC, Fiori C, Lifshin E. Scanning electron microscopy and X-ray microanalysis. New York: Plenum Press; 1981.CrossRefGoogle Scholar
  19. 19.
    Tomar R, Sharma P, Sharma P, Tomar R. Studies on the crystallographic changes in an analogue of aluminosilicate mineral Muscovite on sorption of UO2 2+, Th4+ & Ru3+. Ind J Chem. 2006;45(A):1400–4.Google Scholar
  20. 20.
    Rafel I, Heidi ES, Mathias B, Marco K, Peter E. Crystalline complexes of agriculturally active organic compounds. US Patent App. 20100113543; 2010.Google Scholar
  21. 21.
    Shirin Z, Mukherjee RM. Stable cyclohexadienyl complexes of ruthenium in a piano stool geometry containing a tridentate nitrogen donor ligand. First structural characterization of the (5-cyanocyclohexadienyl)ruthenium(II) complex and spectroelectrochemical correlation. Polyhedron. 1992;11:2625.CrossRefGoogle Scholar
  22. 22.
    Raman N, Ravichandran S, Thangaraja C. Copper(II), cobalt(II), nickel(II) and zinc(II) complexes of Schiff base derived from benzil-2,4-dinitrophenylhydrazone with aniline. J Chem Sci. 2004;116(4):215–9.CrossRefGoogle Scholar
  23. 23.
    Kalia SB, Kaushal G, Lumba K. Priyanka. Thermoanalytical investigations of 4-methylpiperazine-1-carbodithioic acid ligand and its iron(III), copper(II) and zinc(II) complexes. J Therm Anal Calorim. 2008;91(2):609–13.CrossRefGoogle Scholar
  24. 24.
    Yesilkaynak T. 2-Chloro-N-((5-chloropyridine-2-yl)carbamothioyl)benzamide and its Co(II), Ni(II) and Cu(II) metal complexes Synthesis, characterization, thermal decomposition, electrochemical behavior and antioxidant activity. J Therm Anal Calorim. 2016;124:1029–37.CrossRefGoogle Scholar
  25. 25.
    Singh G, Shrimal AK, Kapoor IPS, Singh CP, Kumar D, Manan SM. Kinetics of thermolysis of some transition metal perchlorate complexes with 1,6-diaminohexane ligand. J Therm Anal Calorim. 2011;103(1):149–55.CrossRefGoogle Scholar
  26. 26.
    Malecka B, Lacz A, Drozdz E, Malecki A. Thermal decomposition of d-metal nitrates supported on alumina. J Therm Anal Calorim. 2015;119:1053–61.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Shashi B. Kalia
    • 1
  • Rajesh Kumar
    • 1
  • Monika Bharti
    • 1
  • J. Christopher
    • 2
  1. 1.Department of ChemistryHimachal Pradesh UniversityShimlaIndia
  2. 2.Indian Oil Corporation, R&DFaridabadIndia

Personalised recommendations