Skip to main content
Log in

Nucleated polylactide blend films with nanoprecipitated calcium carbonate and talc

Preparation, properties, and crystallization kinetics

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nucleated polylactide (PLA) blend films with various types and contents of nucleating agent were prepared in a twin-screw extruder. The influences of type and level of nucleating agent on the tensile, thermal, and morphological properties of the blend films were investigated. Furthermore, effects of different cooling rates (1–10 °C min−1) on non-isothermal processes and various crystallization temperatures (T c) (100–125 °C) on isothermal conditions were used to evaluate the crystallization behaviors and kinetics of these films by differential scanning calorimeter (DSC) and polarized light microscope. Nanoprecipitated calcium carbonate (NPCC) and talc were used as a nucleating agent at different concentrations from 0 to 2 phr. The results showed that the tensile properties, thermal stability, spherulitic morphology, and crystallization behaviors of the nucleated PLA blends significantly depended upon the addition of nucleating agent. Tensile properties of the blends were improved with increasing of nucleating agent contents; in contrast, its thermal stability decreased. These behaviors were similarly observed in both nucleated PLA blends with NPCC and talc. Furthermore, DSC curves revealed that NPCC and talc could be a proficient nucleating agent for PLA, resulting in the increments of T c, crystallization rate, degree of crystallinity (χ c), and spherulitic density of nucleated PLA films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xiao H, Lu W, Yeh JT. Crystallization behavior of fully biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends. J Appl Polym Sci. 2009;112:3754–63.

    Article  CAS  Google Scholar 

  2. Nam BU, Min KD, Son Y. Investigation of the nanostructure, thermal stability, and mechanical properties of polylactic acid/cellulose acetate butyrate/clay nanocomposites. Mater Lett. 2015;150:118–21.

    Article  CAS  Google Scholar 

  3. Kelnar I, Kratochvil J, Kapralkova L. Crystallization and thermal properties of melt-drawn PCL/PLA microfibrillar composites. J Therm Anal Calorim. 2016;124:799–805.

    Article  CAS  Google Scholar 

  4. Wang Y, Chiao SM, Hung TF, Yang SY. Improvement in toughness and heat resistance of poly(lactic acid)/polycarbonate blend through twin-screw blending: influence of compatibilizer type. J Appl Polym Sci. 2012;125:E402–12.

    Article  CAS  Google Scholar 

  5. Shi X, Zhang G, Phuong TV, Lazzeri A. Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly(lactic acid). Molecules. 2015;20(1):1579–93.

    Article  CAS  Google Scholar 

  6. Li C, Dou Q, Bai Z, Lu Q. Non-isothermal crystallization behaviors and spherulitic morphology of poly(lactic acid) nucleated by a novel nucleating agent. J Therm Anal Calorim. 2015;122:407–17.

    Article  CAS  Google Scholar 

  7. Akos NI, Wahit MU, Mohamed R, Yussuf AA. Preparation, characterization, and mechanical properties of poly(ε-caprolactone)/polylactic acid blend composites. Polym Compos. 2013;34:763–8.

    Article  CAS  Google Scholar 

  8. Blanco I, Siracusa V. Kinetic study of the thermal and thermooxidative degradations of polylactide-modified films for food packaging. J Therm Anal Calorim. 2013;112:1171–7.

    Article  CAS  Google Scholar 

  9. Arrieta MP, Lopez J, Hernandez A, Rayon E. Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. Eur Polym J. 2014;50:255–70.

    Article  CAS  Google Scholar 

  10. Henricks J, Boyum M, Zheng W. Crystallization kinetics and structure evolution of a polylactic acid during melt and cold crystallization. J Therm Anal Calorim. 2015;120:1765–74.

    Article  CAS  Google Scholar 

  11. Battegazzore D, Bocchini S, Frache A. Crystallization kinetics of poly(lactic acid)-talc composites. Express Polym Lett. 2011;5:849–58.

    Article  CAS  Google Scholar 

  12. Wypych G. Handbook of plasticizers: chapter 7. In: Wypych G, editor. Plasticizer motion and diffusion. Toronto: ChemTec Publishing; 2004. pp. 159–160.

  13. Ali I, Elleithy R, Al-Zahrani SM, Ali Mohsin ME. Viscoelastic, thermal, and morphological analysis of HDPE/EVA/CaCO3 ternary blends. Polym Bull. 2011;67:1961–78.

    Article  CAS  Google Scholar 

  14. Jiang XL, Luo SJ, Sun K, Chen XD. Effect of nucleating agents on crystallization kinetics of PET. Express Polym Lett. 2007;1:245–51.

    Article  CAS  Google Scholar 

  15. Hanim H, Ahmad Fuad MY, Zarina R, Mohd Ishak ZA, Hassan A. Properties and structure of polypropylene/polyethylene-octene elastomer/nano CaCO3 composites. J Thermoplast Compos. 2008;21:123–40.

    Article  CAS  Google Scholar 

  16. Zhang YF. Comparison of nucleation effects of organic phosphorous and sorbital derivative nucleating agents in isotactic polypropylene. J Macromol Sci, Phys. 2008;47:1188–96.

    Article  CAS  Google Scholar 

  17. Huang JW, Hung YC, Wen YL, Kang CC, Yeh MY. Polylactide/nano- and micro-scale silica composite films. II. Melting behavior and cold crystallization. J Appl Polym Sci. 2009;112:3149–56.

    Article  CAS  Google Scholar 

  18. Fowlks AC, Narayan R. The effect of maleated polylactic acid (PLA) as an interfacial modifier in PLA-talc composites. J Appl Polym Sci. 2010;118:2810–20.

    Article  CAS  Google Scholar 

  19. Xiao H, Yang L, Ren X, Jiang T, Yeh JT. Kinetics and crystal structure of poly(lactic acid) crystallized nonisothermally: effect of plasticizer and nucleating agent. Polym Compos. 2010;31:2057–68.

    Article  CAS  Google Scholar 

  20. Cai Y, Yan S, Yin J, Fan Y, Chen X. Crystallization behavior of biodegradable poly(L-lactic acid) filled with a powerful nucleating agent: N, N′-Bis (benzoyl) suberic acid dihydrazide. J Appl Polym Sci. 2011;121:1408–16.

    Article  CAS  Google Scholar 

  21. Wilbrink MWJ, Argon AS, Cohen RE, Weinberg M. Toughen-ability of Nylon 6 with CaCO3 filler particles: new findings and general principles. Polymer. 2001;42:10155–80.

    Article  CAS  Google Scholar 

  22. Bartczak Z, Argon AS, Cohen RE, Weinberg M. The morphology and orientation of polyethylene in films of sub-micron thickness crystallized in contact with calcite and rubber substrates. Polymer. 1999;40:2367–80.

    Article  CAS  Google Scholar 

  23. Huda M, Drzal L, Misra M. A study on green composites from recycled newspaper fiber reinforced poly(lactic acid). Ind Eng Chem Res. 2005;44:5593–601.

    Article  CAS  Google Scholar 

  24. Wang H, Sun XZ, Seib PJ. Strengthening blends of poly(lactic acid) and starch with methylenediphenyl diisocyanate. Appl Polym Sci. 2001;82:1761–7.

    Article  CAS  Google Scholar 

  25. Phetwarotai W, Aht-Ong D. Properties and nonisothermal crystallization behavior of nucleated polylactide biodegradable composite films. Adv Mater Res. 2012;488–489:671–5.

    Article  Google Scholar 

  26. Tabi T, Sajo IE, Szabo F, Luyt AS, Kovacs JG. Crystalline structure of annealed polylactic acid and its relation to processing. Express Polym Lett. 2010;4:659–68.

    Article  CAS  Google Scholar 

  27. Lee JH, Jeong YG. Preparation and crystallization behavior of polylactide nanocomposites reinforced with poss-modified montmorillonite. Fiber Polym. 2011;12:180–9.

    Article  CAS  Google Scholar 

  28. Gedde UFLW. Polymer physics. 1st ed. London: Chapman & Hall; 1995.

    Google Scholar 

  29. Hwang JJ, Huang SM, Liu HJ, Chu HC, Lin LH, Chung CS. Crystallization kinetics of poly(L-lactic acid)/montmorillonite nanocomposites under isothermal crystallization condition. J Appl Polym Sci. 2012;124:2216–26.

    Article  CAS  Google Scholar 

  30. Xiao HW, Li P, Ren X, Jiang T, Yeh JT. Isothermal crystallization kinetics and crystal structure of poly(lactic acid): effect of triphenyl phosphate and talc. J Appl Polym Sci. 2010;118:3558–69.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledged the financial support from Ratchadapiseksomphot Endowment Fund, Chulalongkorn University (cu-58-034-AM) and The 90th Anniversary of Chulalongkorn University Fund. Additionally, this research was partially supported by Ratchadapiseksomphot Endowment under Outstanding Research Performance Program (GF_58_08_23_01). W. Phetwarotai gratefully thanks the Development and Promotion of Science and technology Talents project (DPST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duangdao Aht-Ong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phetwarotai, W., Aht-Ong, D. Nucleated polylactide blend films with nanoprecipitated calcium carbonate and talc. J Therm Anal Calorim 127, 2367–2381 (2017). https://doi.org/10.1007/s10973-016-5802-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5802-2

Keywords

Navigation