Skip to main content
Log in

Tuning reactivity of nanoaluminum with fluoropolymer via electrospray deposition

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Polyvinylidene fluoride (PVDF) is a potential oxidizer for aluminum powders as well as an excellent binder. The strong electronegative fluorine within the polymer can react with the alumina passivation shell surrounding an aluminum (Al) particle to promote Al particle reactivity. In this study, nanoaluminum (n-Al)/PVDF microsphere particles with diameters of between 1 and 5 μm were successfully prepared with PVDF content of 5, 10 and 15 % by mass using the electrospray deposition method. Thermogravimetric–differential scanning calorimetric analysis shows more intense heat release process (the sharper exothermic peak) compared to n-Al. The combustion properties tested in open air show that all samples can be ignited, while the n-Al/PVDF demonstrated more active reactivity in comparison with n-Al. The burning duration decreases from 3.51 s to 219 ms as the PVDF concentration increases. The work, which shows that using electrospray deposition fabricates the spherical particles consisting of n-Al and reactive binder, expects an approach to the promising n-Al in energetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang BY, Huang C, Yan S, Li YC, Cheng Y. Enhanced reactivity of boron, through adding nano-aluminum and wet ball milling. Appl Surf Sci. 2013;286:91–8.

    Article  CAS  Google Scholar 

  2. Dreizin EL. Metal-based reactive nanomaterials. Energy Combust. Sci. 2009;35(2):141–67.

    Article  CAS  Google Scholar 

  3. Yen NH, Wang LY. Reactive metals in explosives. Propellants Explos Pyrotech. 2012;37(2):143–55.

    Article  CAS  Google Scholar 

  4. Xing Xiaoling, Zhao Shengxiang, Huang Wenming, et al. Thermal decomposition behavior of hexanitrohexaazaisowurtzitane and its blending with BTATz (expand) and Al by microcalorimetry. J Therm Anal Calorim. 2015;120:1393–7.

    Article  CAS  Google Scholar 

  5. Fathollahi Manoochehr, Behnejad Hassan. A comparative study of thermal behaviors and kinetics analysis of the pyrotechnic compositions containing Mg and Al. J Therm Anal Calorim. 2015;120:1483–92.

    Article  CAS  Google Scholar 

  6. Wang LL, Munir ZA, Maximov YM. Thermite reactions: their utilization in the synthesis and processing of materials. J Mater Sci. 1993;28(14):3693–708.

    Article  CAS  Google Scholar 

  7. Shimizu A, Saitou J, Hao YJ. Effect of contact points between particles on the reaction rate in the Fe2O3/V2O5 system. J Solid State Ion. 1990;38(3–4):261–9.

    Article  CAS  Google Scholar 

  8. Granier JJ, Pantoya ML. Combustion behavior of highly energetic thermites: nano versus micron composites. Propellants Explos Pyrotech. 2005;30(1):53–62.

    Article  Google Scholar 

  9. Severac F, Alphonse P, Esteve A, Bancaud A, Rossi C. High-energy Al/CuO nanocomposites obtained by DNA-directed assembly. Adv Funct Mater. 2012;22(2):323–9.

    Article  CAS  Google Scholar 

  10. Brege J, Hamilton C, Crouse C, Barron A. Ultrasmall copper nanoparticles from a hydrophobically immobilized surfactant template. Nano Lett. 2009;9(6):2239–42.

    Article  CAS  Google Scholar 

  11. Liakos IL, McAlpine E, Chen XY, Newman R, Alexander MR. Assembly of octadecyl phosphonic acid on the α-Al2O3 (0001) surface of air annealed alumina: evidence for termination dependent adsorption. Appl Surf Sci. 2008;255(5):3276–82.

    Article  CAS  Google Scholar 

  12. Oberg K, Persson P, Shchukarev A, Eliasson B. Comparison of monolayer films of stearic acid and methyl stearate on an Al2O3 surface. Thin Solid Films. 2001;397(1–2):102–8.

    Article  CAS  Google Scholar 

  13. Karaman ME, Antelmi DA, Pashley RM. The production of stable hydrophobic surfaces by the adsorption of hydrocarbon and fluorocarbon carboxylic acids onto alumina substrates. Colloids Surf A. 2001;182(1–3):285–98.

    Article  CAS  Google Scholar 

  14. Crouse C, Pierce C, Spowart J. Influencing solvent miscibility and aqueous stability of aluminum nanoparticles through surface functionalization with acrylic monomers. ACS Appl Mater Interfaces. 2010;2(9):2560–9.

    Article  CAS  Google Scholar 

  15. Jouet RJ, Warren A, Rosenberg DM, Bellito VJ, Park K, Zachariah MR. Surface passivation of bare aluminum nanoparticles using perfluoroalkyl carboxylic acids. Chem Mater. 2005;17(11):2987–96.

    Article  CAS  Google Scholar 

  16. Kappagantula KS, Farley C, Pantoya ML, Horn J. Tuning energetic material reactivity using surface functionalization of aluminum fuel. J Phys Chem C. 2012;116(46):24469–75.

    Article  CAS  Google Scholar 

  17. Ayoman E, Hosseini SG. Synthesis of CuO nanopowders by high-energy ball-milling method and investigation of their catalytic activity on thermal decomposition of ammonium perchlorate particles. J Therm Anal Calorim. 2016;123:1213–24.

    Article  CAS  Google Scholar 

  18. Umbrajkar SM, Seshadri S, Schoenitz M, Hoffmann VK, Dreizin EL. Aluminum-rich Al-MoO3 nanocomposite powders prepared by arrested reactive milling. J Propul Power. 2008;24(2):192–8.

    Article  CAS  Google Scholar 

  19. Umbrajkar SM, Trunov MA, Schoenitz M, Dreizin EL, Broad R. Arrested reactive milling synthesis and characterization of sodium-nitrate based reactive composites. Propellants Explos Pyrotech. 2007;32(1):32–41.

    Article  CAS  Google Scholar 

  20. Sippel TR, Son SF, Groven LJ. Altering reactivity of aluminum with selective inclusion of polytetrafluoroethylene through mechanical activation. Propellants Explos Pyrotech. 2013;289(2):286–95.

    Article  Google Scholar 

  21. Sippel TR, Son SF, Groven LJ. Modifying aluminum reactivity with poly(carbon monofluoride) via mechanical activation. Propellants Explos Pyrotech. 2013;38(3):321–6.

    Article  CAS  Google Scholar 

  22. Yan S, Jian GQ, Zachariah MR. Electrospun nanofiber-based thermite textiles and their reactive properties. ACS Appl Mater Interfaces. 2012;4(12):6432–5.

    Article  CAS  Google Scholar 

  23. Li Xiangyu, Huang Chuan, Yang Hongtao, Li Yanchun, Cheng Yi. Thermal reaction properties of aluminum/copper (II) oxide/poly(vinylidene fluoride) nanocomposite. J Therm Anal Calorim. 2016;124:899–907.

    Article  CAS  Google Scholar 

  24. Correia DM, Gonçalves R, Ribeiro C, Lanceros-Mendez S, et al. Electrosprayed poly(vinylidene fluoride) microparticles for tissue engineering applications. RSC Adv. 2014;4:33013–21.

    Article  CAS  Google Scholar 

  25. Gonçalves R, Martins P, Correia DM, et al. Development of magnetoelectric CoFe2O4/poly(vinylidene fluoride) microspheres. RSC Adv. 2015;5:35852–7.

    Article  Google Scholar 

  26. Li X, Guerieri P, Zhou W, Huang C, Zachariah MR. Laminate nano-composite with enhanced propellant properties. ACS Appl Mater Interfaces. 2015;17(7):9103–9.

    Article  Google Scholar 

  27. Huang C, Yang HT, Li YC, Cheng Y. Characterization of aluminum/poly(vinylidene fluoride) by thermogravimetric analysis, differential scanning calorimetry, and mass spectrometry. Anal Lett. 2015;48(13):2011–21.

    Article  CAS  Google Scholar 

  28. Almería Begoña, Gomez Alessandro. Electrospray synthesis of monodisperse polymer particles in a broad (60 nm–2 µm) diameter range: guiding principles and formulation recipes. J Colloid Interface Sci. 2014;417:121–30.

    Article  Google Scholar 

  29. Juknelevicius Dominykas, Kubilius Rytis, Ramanavicius Arunas. Oxidizer ratio and oxygen balance influence on the emission spectra of green-colored pyrotechnic flames. Eur J Inorg Chem. 2015;33:5511–5.

    Article  Google Scholar 

  30. Botelho G, Lanceros-Mendez S, Goncalves AM, Sencadas V, Rocha JG. Relationship between processing conditions, defects and thermal degradation of poly(vinylidene fluoride) in the β-phase. J Non-Cryst Solids. 2008;354(1):72–8.

    Article  CAS  Google Scholar 

  31. Wang Haiyang, Jian Guoqiang, Yan Shi, DeLisio Jeffery B, Huang Chuan, Zachariah Michael R. Electrospray formation of gelled nano-aluminum microspheres with superior reactivity. Appl Mater Interfaces. 2013;5:6797–801.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongtao Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Huang, C. & Chen, H. Tuning reactivity of nanoaluminum with fluoropolymer via electrospray deposition. J Therm Anal Calorim 127, 2293–2299 (2017). https://doi.org/10.1007/s10973-016-5801-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5801-3

Keywords

Navigation