Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 127, Issue 3, pp 2253–2262 | Cite as

Kinetic and thermal safety analysis for tert-butyl peroxy-3,5,5-trimethylhexanoate by advanced calorimetric technology

  • Yi Yang
  • Yun-Ting Tsai
  • Chen-Rui Cao
  • Chi-Min Shu
Article

Abstract

Thermal stability parameters were evaluated for the decomposition reaction of tert-butyl peroxy-3,5,5-trimethylhexanoate (TBPMH), a free-radical initiator, by differential scanning calorimetry. According to the results, the apparent exothermic onset temperature, heat of decomposition, and time to maximum rate under adiabatic conditions of TBPMH were 103.0 °C, −924.0 kJ mol−1, and 9.81 min (at 90.0 °C), respectively. A kinetic model was also established under different nonisothermal conditions to evaluate the kinetic behavior of TBPMH by model-free technique and model-fitting method. The self-accelerating decomposition temperature (SADT) was calculated and was similar to that reported in the literature; the SADT values corresponding to various package sizes were also calculated, and an increase in mass caused a drop in SADT. These results can provide a solution to prevent runaway reactions during the storage and transportation of TBPMH, and the applied technique can be a substitute for the complicated procedures and large-scale experiments inherent in traditional analysis methods, thereby preventing process thermal accidents, environmental pollution, and energy depletion.

Keywords

Environmental pollution Model-fitting method Model-free technique Process thermal accident Thermal stability parameters 

List of symbols

A

Pre-exponential factor (s−1)

C

Constant number (dimensionless)

Cp

Specific heat capacity (J g−1 K−1)

Cp,c

Test cell-specific heat capacity (J g−1 K−1)

Cp,s

Sample-specific heat capacity (J g−1 K−1)

dα/dt

Conversion rate (s−1)

Ea

Apparent activation energy (kj mol−1)

f(α)

Function of degree of conversion (dimensionless)

g

Geometry factor (dimensionless)

k

Reaction rate constant (dimensionless)

Mc

Test cell mass (mg)

Ms

Sample mass (mg)

MTSR

Maximum temperature of synthesis reaction (°C)

N

Reaction order (dimensionless)

ni

Reaction order of ith stage (dimensionless)

r

Correlation coefficient, −1.0 to 1.0 (dimensionless)

R

Gas constant (8.314 J K−1 mol−1)

R2

Coefficient of determination 0.0–1.0 (dimensionless)

SADT

Self-accelerating decomposition temperature (°C)

T

Absolute temperature (K)

T0

Apparent exothermic onset temperature (°C)

Tf

Final temperature (°C)

Tmax

Maximum reaction temperature (°C)

TMRad

Time to maximum rate under adiabatic conditions (min)

TP

Peak temperature (°C)

T

Time (s)

x

Radius of package (m)

y(α)

Function to define the kinetic model for the model-fitting method (dimensionless)

z

Autocatalytic constant (dimensionless)

α

Degree of conversion (dimensionless)

αmax

Maximum point at function y(α) (dimensionless)

αp

Maximum degree of conversion at specific heat flow (dimensionless)

β

Heating rate (°C min−1)

ρ

Density (kg m−3)

λ

Thermal conductivity (W m−1 K−1)

Φ

Thermal inertia (dimensionless)

Hd

Heat of decomposition (J g−1)

Tad

Adiabatic temperature rise (°C)

References

  1. 1.
    Talouba IB, Balland L, Mouhab N, Chang CT, Abdelghani-Idrissi MA. Kinetic parameter estimation for decomposition of organic peroxides by means of DSC measurements. J Loss Prevent Proc Ind. 2011;24:391–6.CrossRefGoogle Scholar
  2. 2.
    Sanchirico R. Adiabatic behavior of thermal unstable compounds evaluated by means of dynamic scanning calorimetric (DSC) techniques. AIChE J. 2013;59:3806–15.CrossRefGoogle Scholar
  3. 3.
    Hou HY, Shu CM, Duh YS. Exothermic decomposition of cumene hydroperoxide at low temperature conditions. AIChE J. 2011;47:1893–6.CrossRefGoogle Scholar
  4. 4.
    Westerterp KR, Molga EJ. Safety and runaway prevention in batch and semibatch reactors—a review. Chem Eng Res Des. 2006;84:543–52.CrossRefGoogle Scholar
  5. 5.
    Yan QL, Zeman S, Jiménez PES, Zhao FQ, Pérez-Maqueda LA, Málek J. The effect of polymer matrices on the thermal hazard properties of RDX-based PBXs by using model-free and combined kinetic analysis. J Hazard Mater. 2014;271:185–95.CrossRefGoogle Scholar
  6. 6.
    Duh YS, Wu XH, Kao CS. Hazard ratings for organic peroxides. Process Saf Prog. 2008;27:89–99.CrossRefGoogle Scholar
  7. 7.
    Liu SH, Hou HY, Shu CM. Effects of thermal runaway hazard for three organic peroxides conducted by acids and alkalines with DSC, VSP2, and TAM III. Thermochim Acta. 2013;566:226–32.CrossRefGoogle Scholar
  8. 8.
    You ML, Liu MY, Wu SH, Chi JH, Shu CM. Thermal explosion and runaway reaction simulation of lauroyl peroxide by DSC tests. J Therm Anal Calorim. 2009;96:777–82.CrossRefGoogle Scholar
  9. 9.
    Safety and handling of organic peroxides, The Society of the Plastics Industry, USA; 2016. http://www.plasticsindustry.org/.
  10. 10.
    Lin CP, Chang CP, Chou YC, Shu CM. Modeling solid thermal explosion containment on reactor HNIW and HMX. J Hazard Mater. 2010;176:549–58.CrossRefGoogle Scholar
  11. 11.
    Copelli S, Derudi M, Cattaneo CS, Nano G, Raboni M, Torretta V, Rota R. Synthesis of 4-Chloro-3-nitrobenzotrifluoride: industrial thermal runaway simulation due to cooling system failure. Process Saf Environ Prot. 2014;92:659–68.CrossRefGoogle Scholar
  12. 12.
    Safety Data Sheet, Akzo Nobel base chemicals BV, The Netherlands (2015). http://www.akzonobel.com/.
  13. 13.
  14. 14.
    Tong JW, Chen WC, Tsai YT, Cao Y, Chen JR, Shu CM. Incompatible reaction for (3-4-epoxycyclohexane) methyl-3′-4′-epoxycyclohexyl-carboxylate (EEC) by calorimetric technology and theoretical kinetic model. J Therm Anal Calorim. 2014;116:1445–52.CrossRefGoogle Scholar
  15. 15.
    STARe Software with Solaris Operating System. Operating instructions. Sweden: Mettler Toledo; 2015.Google Scholar
  16. 16.
    Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  17. 17.
    Montserrat S, Málek J, Colomer P. Thermal degradation kinetics of epoxy-anhydride resins: I. Influence of a silica filler. Thermochim Acta. 1998;313:83–95.CrossRefGoogle Scholar
  18. 18.
    Yoo MJ, Kim SH, Park SD, Lee WS, Sun JW, Choi JH, Nahm S. Investigation of curing kinetics of various cycloaliphatic epoxy resins using dynamic thermal analysis. Eur Polym J. 2010;46:1158–62.CrossRefGoogle Scholar
  19. 19.
    Málek J. The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim Acta. 1995;267:61–73.CrossRefGoogle Scholar
  20. 20.
    Shah S, Fischer U, Hungerbühler K. A hierarchical approach for the evaluation of chemical process aspects from the perspective of inherent safety. Process Saf Environ Prot. 2003;81:430–43.CrossRefGoogle Scholar
  21. 21.
    Adnađević B, Janković B, Kolar-Anić LJ, Minić D. Normalized Weibull distribution function for modelling the kinetics of non-isothermal dehydration of equilibrium swollen poly(acrylic acid) hydrogel. Chem Eng J. 2007;130:11–7.CrossRefGoogle Scholar
  22. 22.
    Singh H, Chavda A, Nandula S, Jasra RV, Maiti M. Kinetic study on stereospecific polymerization of 1,3-butadiene using a nickel based catalyst system in environmentally friendly solvent. Ind Eng Chem Res. 2012;51:11066–71.CrossRefGoogle Scholar
  23. 23.
    Tsai YT, You ML, Qian XM, Shu CM. Calorimetric techniques combined with various thermokinetic models to evaluate incompatible hazard of tert-butyl peroxy-2-ethyl hexanoate mixed with metal ions. Ind Eng Chem Res. 2013;52:8206–15.CrossRefGoogle Scholar
  24. 24.
    Saraf SR, Rogers WJ, Mannan MS. Prediction of reactive hazards based on molecular structure. J Hazard Mater. 2003;99:15–29.CrossRefGoogle Scholar
  25. 25.
    Xiao HM, Ma XQ, Lai ZY. Isoconversional kinetic analysis of co-combustion of sewage sludge with straw and coal. Appl Energ. 2009;86:1741–5.CrossRefGoogle Scholar
  26. 26.
    Kozlowski C, Kurko K. Consideration of autocatalytic behaviour in determination of self-accelerating decomposition temperature. Burr Ridge: Fauske and Associates; 2008.Google Scholar
  27. 27.
    Fauske HK. Gassy system vent sizing the role of two-phase flow. Burr Ridge: Fauske and Associates; 2011.Google Scholar
  28. 28.
    Lu G, Zhang C, Chen L, Chen W, Yang T, Zhou Y. Kinetic analysis and self-accelerating decomposition temperature (SADT) of β-nitroso-α-naphthol. Process Saf Environ Prot. 2015;96:69–76.CrossRefGoogle Scholar
  29. 29.
    Malow M, Wehrstedt KD. Prediction of the self–accelerating decomposition temperature (SADT) for liquid organic peroxides from differential scanning calorimetry (DSC) measurements. J Hazard Mater. 2005;120:21–4.CrossRefGoogle Scholar
  30. 30.
    Sato Y, Okada K, Akiyoshi M, Murayama S, Matsunaga T. Diphenylmethane diisocyanate self-polymerization: thermal hazard evaluation and proof of runaway reaction in gram scale. J Loss Prevent Proc Ind. 2011;24:558–62.CrossRefGoogle Scholar
  31. 31.
    Tsai LC, Tsai YT, Lin CP, Liu SL, Wu TC, Shu CM. Isothermal versus non-isothermal calorimetric technique to evaluate thermokinetic parameters and thermal hazard of tert-butyl peroxy-2-ethyl hexanoate. J Therm Anal Calorim. 2012;109:1291–6.CrossRefGoogle Scholar
  32. 32.
    Naranjo RA, Conesa JA, Pedretti EF, Romero OR. Kinetic analysis: simultaneous modelling of pyrolysis and combustion processes of dichrostachys cinerea. Biomass Bioenerg. 2012;36:170–5.CrossRefGoogle Scholar
  33. 33.
    Chi JH, Wu SH, Charpentier JC, Yet-Pole I, Shu CM. Thermal hazard accident investigation of hydrogen peroxide mixing with propanone employing calorimetric approaches. J Loss Prevent Proc Ind. 2012;25:142–7.CrossRefGoogle Scholar
  34. 34.
    Omrani A, Simon LC, Rostami AA, Ghaemy M. Cure kinetics, dynamic mechanical and morphological properties of epoxy resin–Im6NiBr 2 system. Eur Polym J. 2008;44:769–79.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Yi Yang
    • 1
  • Yun-Ting Tsai
    • 2
  • Chen-Rui Cao
    • 3
  • Chi-Min Shu
    • 1
    • 3
  1. 1.Key Laboratory of Western Mine Exploitation and Hazard Prevention of Ministry of Education, College of Safety Science and EngineeringXi’an University of Science and Technology (XUST)Xi’anChina
  2. 2.School of Chemical Engineering and TechnologyXi’an Jiaotong UniversityXi’anChina
  3. 3.Center for Process Safety and Industrial Disaster Prevention, School of EngineeringNational Yunlin University of Science and TechnologyDouliouTaiwan, ROC

Personalised recommendations