Skip to main content
Log in

Isothermal crystallization of polycaprolactone/modified clay biodegradable nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, the isothermal crystallization of polycaprolactone (PCL)/modified clay nanocomposites, at several temperatures, was studied. The effects of clay type (organo-modified bentonite B-TBHP and organo-modified montmorillonite C20A) and also the clay content were analysed. Bulk crystallization was studied by differential scanning calorimetry and modelled by the Avrami equation. Special effort was made to correlate the crystallization parameters with the clay dispersion degree inside the polymer matrix. The lowest induction time and fastest overall crystallization rate were obtained with the B-TBHP nanocomposites, which showed the lowest clay dispersion degree. In contrast, C20A nanocomposites showed higher clay dispersion degree inside the PCL matrix and higher induction times and lower overall crystallization rate than B-TBHP ones, even retarding the formation of the equilibrium nucleus with critical dimensions in comparison with neat PCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xu W, Ge M, He P. Nonisothermal crystallization kinetics of polyoxymethylene/montmorillonite nanocomposite. J Appl Polym Sci. 2001;82(9):2281–9.

    Article  CAS  Google Scholar 

  2. Ke Y, Long C, Qi Z. Crystallization, properties, and crystal and nanoscale morphology of PET–clay nanocomposites. J Appl Polym Sci. 1999;71(7):1139–46.

    Article  CAS  Google Scholar 

  3. Liu X, Wu Q. PP/clay nanocomposites prepared by grafting-melt intercalation. Polymer. 2001;42(25):10013–9.

    Article  CAS  Google Scholar 

  4. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mat Sci Eng R Rep. 2000;28(1):1–63.

    Article  Google Scholar 

  5. Messersmith PB, Giannelis EP. Synthesis and barrier properties of poly (ε-caprolactone)-layered silicate nanocomposites. J Polym Sci Part A Polym Chem. 1995;33(7):1047–57.

    Article  CAS  Google Scholar 

  6. Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, et al. Mechanical properties of nylon 6-clay hybrid. J Mat Res. 1993;8(05):1185–9.

    Article  CAS  Google Scholar 

  7. Gilman JW, Jackson CL, Morgan AB, Harris R Jr, Manias E, Giannelis EP, et al. Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem Mat. 2000;12(7):1866–73.

    Article  CAS  Google Scholar 

  8. Gorrasi G, Tortora M, Vittoria V, Pollet E, Lepoittevin B, Alexandre M, et al. Vapor barrier properties of polycaprolactone montmorillonite nanocomposites: effect of clay dispersion. Polymer. 2003;44(8):2271–9.

    Article  CAS  Google Scholar 

  9. Di Maio E, Iannace S, Sorrentino L, Nicolais L. Isothermal crystallization in PCL/clay nanocomposites investigated with thermal and rheometric methods. Polymer. 2004;45(26):8893–900.

    Article  Google Scholar 

  10. Homminga D, Goderis B, Dolbnya I, Groeninckx G. Crystallization behavior of polymer/montmorillonite nanocomposites. Part II. Intercalated poly (ε-caprolactone)/montmorillonite nanocomposites. Polymer. 2006;47(5):1620–9.

    Article  CAS  Google Scholar 

  11. Krikorian V, Pochan DJ. Unusual crystallization behavior of organoclay reinforced poly (l-lactic acid) nanocomposites. Macromolecules. 2004;37(17):6480–91.

    Article  CAS  Google Scholar 

  12. Kennedy M, Turturro G, Brown G, St-Pierre L. Silica retards radial growth of spherulites in isotactic polystyrene. Nature. 1980;287:316–17.

    Article  CAS  Google Scholar 

  13. Jain S, Goossens H, van Duin M, Lemstra P. Effect of in situ prepared silica nano-particles on non-isothermal crystallization of polypropylene. Polymer. 2005;46(20):8805–18.

    Article  CAS  Google Scholar 

  14. Yuan Q, Awate S, Misra R. Nonisothermal crystallization behavior of polypropylene–clay nanocomposites. Eur Polym J. 2006;42(9):1994–2003.

    Article  CAS  Google Scholar 

  15. Papageorgiou GZ, Achilias DS, Bikiaris DN. Crystallization kinetics of biodegradable poly (butylene succinate) under isothermal and non-isothermal conditions. Macromol Chem Phys. 2007;208(12):1250–64.

    Article  CAS  Google Scholar 

  16. Medellin-Rodriguez F, Mata-Padilla J, Hsiao B, Waldo-Mendoza M, Ramirez-Vargas E, Sanchez-Valdes S. The effect of nanoclays on the nucleation, crystallization, and melting mechanisms of isotactic polypropylene. Polym Eng Sci. 2007;47(11):1889.

    Article  CAS  Google Scholar 

  17. Xu W, Ge M, He P. Nonisothermal crystallization kinetics of polypropylene/montmorillonite nanocomposites. J Polym Sci Part B Polym Phys. 2002;40(5):408–14.

    Article  CAS  Google Scholar 

  18. Xu W, Liang G, Zhai H, Tang S, Hang G, Pan W-P. Preparation and crystallization behaviour of PP/PP-g-MAH/Org-MMT nanocomposite. Eur Polym J. 2003;39(7):1467–74.

    Article  CAS  Google Scholar 

  19. Birgersson E, Li H, Wu S. Transient analysis of temperature-sensitive neutral hydrogels. J Mech Phys Sol. 2008;56(2):444–66.

    Article  CAS  Google Scholar 

  20. Ollier R, Vázquez A, Alvarez V. Biodegradable nanocomposites based on modified bentonite and polycaprolactone. In: Advances in nanotechnology. New York: Nova Publishers; 2011. p. 281–301.

  21. Wagener R, Reisinger TJ. A rheological method to compare the degree of exfoliation of nanocomposites. Polymer. 2003;44(24):7513–8.

    Article  CAS  Google Scholar 

  22. Ollier R, Lanfranconi M, Ludueña L, Alvarez V (eds.) Preparation and characterization of PCL/modified-clay biodegradable nanocomposites Euporean polymer conference EPF 2013 2013 2013; Pisa.

  23. Kelnar I, Kratochvíl J, Kaprálková L. Crystallization and thermal properties of melt-drawn PCL/PLA microfibrillar composites. J Therm Anal Calorim. 2016;124:799–805.

    Article  CAS  Google Scholar 

  24. Ludueña LN, Vazquez A, Alvarez VA. Crystallization of polycaprolactone–clay nanocomposites. J Appl Polym Sci. 2008;109(5):3148–56.

    Article  Google Scholar 

  25. Olewnik E, Garman K. Thermal properties of nanocomposites based on polyethylene and n-heptaquinolinum modified montmorillonite. J Therm Anal Calorim. 2012;110:479–84.

    Article  CAS  Google Scholar 

  26. Jimenez G, Ogata N, Kawai H, Ogihara T. Structure and thermal/mechanical properties of poly (ϵ-caprolactone)-clay blend. J Appl Polym Sci. 1997;64(11):2211–20.

    Article  CAS  Google Scholar 

  27. Luduena L, Kenny J, Vázquez A, Alvarez V. Effect of clay organic modifier on the final performance of PCL/clay nanocomposites. Mat Sci Eng A. 2011;529:215–23.

    Article  CAS  Google Scholar 

  28. Ludueña L, Vázquez A, Alvarez V. Effect of the type of clay organo-modifier on the morphology, thermal/mechanical/impact/barrier properties and biodegradation in soil of polycaprolactone/clay nanocomposites. J Appl Polym Sci. 2013;128(5):2648–57.

    Article  Google Scholar 

  29. Díaz A, Franco L, Casas M, del Valle L, Aymamí J, Olmo C, Puiggalí J. Preparation of micro-molded exfoliated clay nanocomposites by means of ultrasonic technology. J Polym Res. 2014;21:584.

    Article  Google Scholar 

  30. Gupta Y, Abbas S, Sharma R, Setua D. Crystallization kinetics of polyurethane nanocomposites. J Therm Anal Calorim. 2015;119:1393–405.

    Article  CAS  Google Scholar 

  31. Chen J, Xu J, Xu H, Li Z, Zhong G, Lei J. The crystallization behavior of biodegradable poly(butylene succinate) in the presence of organically modified clay with a wide range of loadings. Chin J Polym Sci. 2015;33(4):576–86.

    Article  CAS  Google Scholar 

  32. Desio GP, Rebenfeld L. Crystallization of fiber-reinforced poly (phenylene sulfide) composites II Modeling the crystallization kinetics. J Appl Polym Sci. 1992;45(11):2005–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Agency of Science and Technology (ANPCyT) [Fonarsec FSNano004] and the National University of Mar del Plata (UNMdP) [15G327].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro N. Ludueña.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanfranconi, M., Alvarez, V.A. & Ludueña, L.N. Isothermal crystallization of polycaprolactone/modified clay biodegradable nanocomposites. J Therm Anal Calorim 126, 1273–1280 (2016). https://doi.org/10.1007/s10973-016-5734-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5734-x

Keywords

Navigation