Journal of Thermal Analysis and Calorimetry

, Volume 126, Issue 3, pp 1273–1280 | Cite as

Isothermal crystallization of polycaprolactone/modified clay biodegradable nanocomposites

  • Matías Lanfranconi
  • Vera A. Alvarez
  • Leandro N. Ludueña


In this paper, the isothermal crystallization of polycaprolactone (PCL)/modified clay nanocomposites, at several temperatures, was studied. The effects of clay type (organo-modified bentonite B-TBHP and organo-modified montmorillonite C20A) and also the clay content were analysed. Bulk crystallization was studied by differential scanning calorimetry and modelled by the Avrami equation. Special effort was made to correlate the crystallization parameters with the clay dispersion degree inside the polymer matrix. The lowest induction time and fastest overall crystallization rate were obtained with the B-TBHP nanocomposites, which showed the lowest clay dispersion degree. In contrast, C20A nanocomposites showed higher clay dispersion degree inside the PCL matrix and higher induction times and lower overall crystallization rate than B-TBHP ones, even retarding the formation of the equilibrium nucleus with critical dimensions in comparison with neat PCL.


Nanocomposites Compatibility Biodegradable polymer Crystallization Modelling Bentonite 



This work was supported by the National Agency of Science and Technology (ANPCyT) [Fonarsec FSNano004] and the National University of Mar del Plata (UNMdP) [15G327].


  1. 1.
    Xu W, Ge M, He P. Nonisothermal crystallization kinetics of polyoxymethylene/montmorillonite nanocomposite. J Appl Polym Sci. 2001;82(9):2281–9.CrossRefGoogle Scholar
  2. 2.
    Ke Y, Long C, Qi Z. Crystallization, properties, and crystal and nanoscale morphology of PET–clay nanocomposites. J Appl Polym Sci. 1999;71(7):1139–46.CrossRefGoogle Scholar
  3. 3.
    Liu X, Wu Q. PP/clay nanocomposites prepared by grafting-melt intercalation. Polymer. 2001;42(25):10013–9.CrossRefGoogle Scholar
  4. 4.
    Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mat Sci Eng R Rep. 2000;28(1):1–63.CrossRefGoogle Scholar
  5. 5.
    Messersmith PB, Giannelis EP. Synthesis and barrier properties of poly (ε-caprolactone)-layered silicate nanocomposites. J Polym Sci Part A Polym Chem. 1995;33(7):1047–57.CrossRefGoogle Scholar
  6. 6.
    Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, et al. Mechanical properties of nylon 6-clay hybrid. J Mat Res. 1993;8(05):1185–9.CrossRefGoogle Scholar
  7. 7.
    Gilman JW, Jackson CL, Morgan AB, Harris R Jr, Manias E, Giannelis EP, et al. Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem Mat. 2000;12(7):1866–73.CrossRefGoogle Scholar
  8. 8.
    Gorrasi G, Tortora M, Vittoria V, Pollet E, Lepoittevin B, Alexandre M, et al. Vapor barrier properties of polycaprolactone montmorillonite nanocomposites: effect of clay dispersion. Polymer. 2003;44(8):2271–9.CrossRefGoogle Scholar
  9. 9.
    Di Maio E, Iannace S, Sorrentino L, Nicolais L. Isothermal crystallization in PCL/clay nanocomposites investigated with thermal and rheometric methods. Polymer. 2004;45(26):8893–900.CrossRefGoogle Scholar
  10. 10.
    Homminga D, Goderis B, Dolbnya I, Groeninckx G. Crystallization behavior of polymer/montmorillonite nanocomposites. Part II. Intercalated poly (ε-caprolactone)/montmorillonite nanocomposites. Polymer. 2006;47(5):1620–9.CrossRefGoogle Scholar
  11. 11.
    Krikorian V, Pochan DJ. Unusual crystallization behavior of organoclay reinforced poly (l-lactic acid) nanocomposites. Macromolecules. 2004;37(17):6480–91.CrossRefGoogle Scholar
  12. 12.
    Kennedy M, Turturro G, Brown G, St-Pierre L. Silica retards radial growth of spherulites in isotactic polystyrene. Nature. 1980;287:316–17.CrossRefGoogle Scholar
  13. 13.
    Jain S, Goossens H, van Duin M, Lemstra P. Effect of in situ prepared silica nano-particles on non-isothermal crystallization of polypropylene. Polymer. 2005;46(20):8805–18.CrossRefGoogle Scholar
  14. 14.
    Yuan Q, Awate S, Misra R. Nonisothermal crystallization behavior of polypropylene–clay nanocomposites. Eur Polym J. 2006;42(9):1994–2003.CrossRefGoogle Scholar
  15. 15.
    Papageorgiou GZ, Achilias DS, Bikiaris DN. Crystallization kinetics of biodegradable poly (butylene succinate) under isothermal and non-isothermal conditions. Macromol Chem Phys. 2007;208(12):1250–64.CrossRefGoogle Scholar
  16. 16.
    Medellin-Rodriguez F, Mata-Padilla J, Hsiao B, Waldo-Mendoza M, Ramirez-Vargas E, Sanchez-Valdes S. The effect of nanoclays on the nucleation, crystallization, and melting mechanisms of isotactic polypropylene. Polym Eng Sci. 2007;47(11):1889.CrossRefGoogle Scholar
  17. 17.
    Xu W, Ge M, He P. Nonisothermal crystallization kinetics of polypropylene/montmorillonite nanocomposites. J Polym Sci Part B Polym Phys. 2002;40(5):408–14.CrossRefGoogle Scholar
  18. 18.
    Xu W, Liang G, Zhai H, Tang S, Hang G, Pan W-P. Preparation and crystallization behaviour of PP/PP-g-MAH/Org-MMT nanocomposite. Eur Polym J. 2003;39(7):1467–74.CrossRefGoogle Scholar
  19. 19.
    Birgersson E, Li H, Wu S. Transient analysis of temperature-sensitive neutral hydrogels. J Mech Phys Sol. 2008;56(2):444–66.CrossRefGoogle Scholar
  20. 20.
    Ollier R, Vázquez A, Alvarez V. Biodegradable nanocomposites based on modified bentonite and polycaprolactone. In: Advances in nanotechnology. New York: Nova Publishers; 2011. p. 281–301.Google Scholar
  21. 21.
    Wagener R, Reisinger TJ. A rheological method to compare the degree of exfoliation of nanocomposites. Polymer. 2003;44(24):7513–8.CrossRefGoogle Scholar
  22. 22.
    Ollier R, Lanfranconi M, Ludueña L, Alvarez V (eds.) Preparation and characterization of PCL/modified-clay biodegradable nanocomposites Euporean polymer conference EPF 2013 2013 2013; Pisa.Google Scholar
  23. 23.
    Kelnar I, Kratochvíl J, Kaprálková L. Crystallization and thermal properties of melt-drawn PCL/PLA microfibrillar composites. J Therm Anal Calorim. 2016;124:799–805.CrossRefGoogle Scholar
  24. 24.
    Ludueña LN, Vazquez A, Alvarez VA. Crystallization of polycaprolactone–clay nanocomposites. J Appl Polym Sci. 2008;109(5):3148–56.CrossRefGoogle Scholar
  25. 25.
    Olewnik E, Garman K. Thermal properties of nanocomposites based on polyethylene and n-heptaquinolinum modified montmorillonite. J Therm Anal Calorim. 2012;110:479–84.CrossRefGoogle Scholar
  26. 26.
    Jimenez G, Ogata N, Kawai H, Ogihara T. Structure and thermal/mechanical properties of poly (ϵ-caprolactone)-clay blend. J Appl Polym Sci. 1997;64(11):2211–20.CrossRefGoogle Scholar
  27. 27.
    Luduena L, Kenny J, Vázquez A, Alvarez V. Effect of clay organic modifier on the final performance of PCL/clay nanocomposites. Mat Sci Eng A. 2011;529:215–23.CrossRefGoogle Scholar
  28. 28.
    Ludueña L, Vázquez A, Alvarez V. Effect of the type of clay organo-modifier on the morphology, thermal/mechanical/impact/barrier properties and biodegradation in soil of polycaprolactone/clay nanocomposites. J Appl Polym Sci. 2013;128(5):2648–57.CrossRefGoogle Scholar
  29. 29.
    Díaz A, Franco L, Casas M, del Valle L, Aymamí J, Olmo C, Puiggalí J. Preparation of micro-molded exfoliated clay nanocomposites by means of ultrasonic technology. J Polym Res. 2014;21:584.CrossRefGoogle Scholar
  30. 30.
    Gupta Y, Abbas S, Sharma R, Setua D. Crystallization kinetics of polyurethane nanocomposites. J Therm Anal Calorim. 2015;119:1393–405.CrossRefGoogle Scholar
  31. 31.
    Chen J, Xu J, Xu H, Li Z, Zhong G, Lei J. The crystallization behavior of biodegradable poly(butylene succinate) in the presence of organically modified clay with a wide range of loadings. Chin J Polym Sci. 2015;33(4):576–86.CrossRefGoogle Scholar
  32. 32.
    Desio GP, Rebenfeld L. Crystallization of fiber-reinforced poly (phenylene sulfide) composites II Modeling the crystallization kinetics. J Appl Polym Sci. 1992;45(11):2005–20.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Matías Lanfranconi
    • 1
  • Vera A. Alvarez
    • 1
  • Leandro N. Ludueña
    • 1
  1. 1.Composite Materials Group (CoMP), Research Institute of Material Science and Technology (INTEMA), Engineering FacultyNational University of Mar del PlataMar del PlataArgentina

Personalised recommendations