Journal of Thermal Analysis and Calorimetry

, Volume 126, Issue 3, pp 1879–1887 | Cite as

Energy evaluation of biochar obtained from the pyrolysis of pine pellets

  • Lidya B. Santos
  • Maria V. Striebeck
  • Marisa S. Crespi
  • Jorge M. V. Capela
  • Clovis A. Ribeiro
  • Marcelo De Julio


The wood pellets are mainly used in heating environments, commercial and residential, as well as fuel for production of thermal and electric energy in industrial plants. Furthermore, the heterogeneity and variable moisture content, combined with the high cost of transport, are limiting challenges that must be overcome with new technologies and new products. In this context, torrefaction and pyrolysis are attractive alternatives for increasing energy density and decreasing the moisture content of the samples, based on thermochemical conversion in a non-oxidizing atmosphere. Samples were produced to perform the energetic characterization of biochar from pine pellet using different heating rates 5–30 °C min−1, different residence temperatures 200, 280 and 570 °C and different residence time (1 and 0.5 h). The high heating value (HHV) of each variable was measured and allowed to observe that the heating rate did not influence of a significant way the results, in other words, a 5 % variation between the lowest and highest heating rate. Notwithstanding, the HHV was expressive compared to the pellet in nature, when it has been found an energetic gain over 80 %. In general, the biochar from pine pellets obtained by torrefaction or pyrolysis has appropriated characteristics compared to pellets in nature, showing a greater amount of energy per unit, high stability, reduced moisture content and reduced ash content. The kinetic of combustion to biochar in oxygen-rich atmosphere showed the dependence between the activation energy and conversion degree, with a continuous decrease in the activation energy, characteristic of complex processes comprised by initial reversible reaction followed by an irreversible one.


Energetic characterization Torrefaction Pyrolysis Pine pellets Biochar Non-isothermal kinetic 



The authors acknowledge CAPES for financial support and BrBiomassa Company for pellet samples.


  1. 1.
    Hansen MT, Jein AR, Hayes S, Bateman P. English handbook for wood pellet combustion. Pelletsatlas, 2009. 2014.
  2. 2.
    Wood pellet heating: a reference on wood pellet fuels & technology for small commercial & industrial facilities. By the Biomass Energy Resource Center. Massachusetts Division of Energy Resources. 2007.
  3. 3.
    Palmer D, Tubby I, Hogan G, Rolls W. Biomass heating: a guide to small log and wood pellet systems. Biomass Energy Centre, Forest Research, Farnham. 2011.
  4. 4.
    Johanssona LS, Lecknerb B, Gustavssona L, Cooperc D, Tullina C, Potter A. Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets. Atmos Environ. 2004;38:4183–95.CrossRefGoogle Scholar
  5. 5.
    Di Giacomo G, Taglieri L. Renewable energy benefits with conversion of woody residues to pellets. Energy. 2009;34:724–31.CrossRefGoogle Scholar
  6. 6.
    Van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ. Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy. 2011;35:3748–62.Google Scholar
  7. 7.
    Nunes LJR, Matias JCO, Catalo JPS. A review on torrefied biomass pellets as a sustainable alternative to coal in power generation. Renew Sustain Energy Rev. 2014;40:153–60.CrossRefGoogle Scholar
  8. 8.
    Medic D, Darr M, Shah A, Potter B, Zimmerman J. Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel. 2012;91:147–54.CrossRefGoogle Scholar
  9. 9.
    Wannapeera J, Fungtammasan B, Worasuwannarak N. Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass. J Anal Appl Pyrol. 2011;92:99–105.CrossRefGoogle Scholar
  10. 10.
    Sacchelli S, Fagarazzi C, Bernetti I. Economic evaluation of forest biomass production in central Italy: a scenario assessment based on spatial analysis tool. Biomass Bioenergy. 2013;53:1–10.CrossRefGoogle Scholar
  11. 11.
    Leslie AD, Mencuccini M, Perks M. The potential for Eucalyptus as a wood fuel in the UK. Appl Energy. 2012;89:176–82.CrossRefGoogle Scholar
  12. 12.
    Kohl T, Laukkanen T, Jrvinen M, Fogelholm CJ. Energetic and environmental performance of three biomass upgrading processes integrated with a CHP plant. Appl Energy. 2013;107:124–34.CrossRefGoogle Scholar
  13. 13.
    Thomas P. Araucaria angustifolia. The IUCN red list of threatened species. Version 2014.3, 2013. Downloadedon06May2015.
  14. 14.
    Guerra MP, Silveira V, dos Santos ALW, Astarita LV, Nodari RO. Somatic embryogenesis in Araucaria angustifolia (Bert) O. Ktze. In: Jain SM, Gupta PK, Newton RJ, editors. Somatic embryogenesis in woody plants. Rotterdam: Springer; 2000. p. 457–78.CrossRefGoogle Scholar
  15. 15.
    Santos LB, Striebeck MV, Crespi MS, Ribeiro CA, De Julio M. Characterization of biochar of pine pellet. J Therm Anal Calorim. 2015;. doi: 10.1007/s10973-015-4740-8.Google Scholar
  16. 16.
    ASTM D792-13, Standard test methods for density and specific gravity (relative density) of plastics by displacement. ASTM International, West Conshohocken, PA, 2013.Google Scholar
  17. 17.
    ASTM E873-82(2013), Standard test method for bulk density of densified particulate biomass fuels. ASTM International, West Conshohocken, PA, 2013.Google Scholar
  18. 18.
    McKendry P. Energy production from biomass (part 1): overview of biomass. Bioresour Technol. 2002;83:37–46.CrossRefGoogle Scholar
  19. 19.
    ASTM E7-03(2009), Standard terminology relating to metallography. ASTM International, West Conshohocken, PA, 2009.Google Scholar
  20. 20.
    Librenti I, Ceotto E, Di Candilo M. Biomass characteristics and Energy contents of dedicated lignocellulosic crops. In: Proceedings of the third international symposium on energy from biomass and waste. Venice, Italy, 8–11 Nov 2010, pp. 8.Google Scholar
  21. 21.
    ASTM D3173-11, Standard test method for moisture in the analysis sample of coal and coke. ASTM International, West Conshohocken, PA, 2011.Google Scholar
  22. 22.
    ASTM D3174-12, Standard test method for ash in the analysis sample of coal and coke from coal. ASTM International, West Conshohocken, PA, 2012.Google Scholar
  23. 23.
    Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Sun̄ol JJ. ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.CrossRefGoogle Scholar
  24. 24.
    Torquato LM, Braz CEM, Ribeiro CA, Capela JMV, Crespi MS. Kinetic study of the co-firing of bagasse-sludge blends. J Therm Anal Calorim. 2015;. doi: 10.1007/s10973-015-4514-3.Google Scholar
  25. 25.
    Wanjun T, Donghua C. An integral method to determine variation in activation energy with extent of conversion. Thermochim Acta. 2005;433(12):72–6.CrossRefGoogle Scholar
  26. 26.
    Marcilla A, Garcia-Garcia S, Asensio A, Conesa JA. Influence of thermal treatment regime on the density and reactivity of activated carbons from almond shells. Carbon. 2000;38:429–40.CrossRefGoogle Scholar
  27. 27.
    Bridgwater AV. Principles and practice of biomass fast pyrolysis processes for liquids. J Anal Appl Pyrol. 1999;51:3–22.CrossRefGoogle Scholar
  28. 28.
    Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy. 2012;38:68–94.CrossRefGoogle Scholar
  29. 29.
    Dermibas A. Pyrolysis of gound beech wood in irregular heating rate conditions. J Anal Appl Pyrol. 2005;73:39–43.CrossRefGoogle Scholar
  30. 30.
    Ranzi E, Cuoci A, Faravelli T, Frassoldati A, Migliavacca G, Pierucci S, Sommariva S. Chemical kinetics of biomass pyrolysis. Energy Fuel. 2008;22:4292–300.CrossRefGoogle Scholar
  31. 31.
    Gracia-Perez M, Wang S, Shen J, Rhodes MJ, Lee WJ, Li CZ. Effects of temperature on the formation of lignin-derived oligomers during the fast pyrolysis of Mallee woody biomass. Energy Fuel. 2008;22:2022–32.CrossRefGoogle Scholar
  32. 32.
    Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicelluloses, cellulose and lignin pyrolysis. Fuel. 2007;86:1781–8.CrossRefGoogle Scholar
  33. 33.
    Antal MJ, Gronli M. The art, science and technology of charcoal production. Ind Eng Chem Res. 2003;42:1619–40.CrossRefGoogle Scholar
  34. 34.
    Vyazovkin S, Linert W. Kinetic analysis of reversible thermal decomposition of solids. Int J Chem Kinet. 1995;27(1):73–84.CrossRefGoogle Scholar
  35. 35.
    Di Blasi C. Combustion and gasification rates of lignocellulosic chars. Prog Energy Combust Sci. 2009;35:121140.CrossRefGoogle Scholar
  36. 36.
    Chen Q, He R, Xu X, Liang Z, Chen C. Experimental study on pore structure and apparent kinetic parameters of char combustion in kinetics-controlled regime. Energy Fuels. 2004;18:1562–8.CrossRefGoogle Scholar
  37. 37.
    Senneca O. Kinetics of pyrolysis, combustion and gasification of three biomass fuels. Fuel Process Technol. 2007;88:8797.CrossRefGoogle Scholar
  38. 38.
    Liu H. Combustion of coal chars in O\(_2\)/CO\(_2\) and O\(_2\)/N\(_2\) mixtures: a comparative study with non-isothermal thermogravimetric analyzer (TGA) tests. Energy Fuels. 2009;23:4278–85.CrossRefGoogle Scholar
  39. 39.
    Magdziars A, Wilk M. Thermal characteristics of the combustion process of biomass and sewage sludge. J Therm Anal Calorim. 2013;114:519–29.CrossRefGoogle Scholar
  40. 40.
    Babiński P, Labojko G, Kotyczka-Morańska M, Plis A. Kinetics of coal and char oxycombustion studied by TG-FTIR. J Therm Anal Calorim. 2013;113:371–8.CrossRefGoogle Scholar
  41. 41.
    Branca C, Di Blasi C, Horacek H. Analysis of the combustion kinetics and thermal behavior of an intumescent system. Ind Eng Chem Res. 2002;41:2107–14.CrossRefGoogle Scholar
  42. 42.
    Branca C, Di Blasi C. Global kinetics of wood char devolatilization and combustion. Energy Fuels. 2003;17:1609–15.CrossRefGoogle Scholar
  43. 43.
    Murphy JJ, Shaddix CR. Combustion kinetics of coal chars in oxygen-enriched environments. Combust Flame. 2006;144:710–29.CrossRefGoogle Scholar
  44. 44.
    Wang X, Hu Z, Deng S, Wang Y, Tan H. Kinetics investigation on the combustion of biochar in O\(_2\)/CO\(_2\) atmosphere. Environ Progress Sustain Energy. 2014;. doi: 10.1002/ep.12063.Google Scholar
  45. 45.
    Toptas A, Yildirim Y, Duman G, Yanik J. Combustion behavior of different kinds of torrefied biomass and their blends with lignite. Bioresour Technol. 2015;177:328–36.CrossRefGoogle Scholar
  46. 46.
    Gil MV, Riaza J, Álvarez L, Pevida C, Pis JJ, Rubiera F. Kinetic models for the oxy-fuel combustion of coal and coalbiomass blend chars obtained in N\(_2\) and CO\(_2\) atmospheres. Energy. 2012;48:510–8.CrossRefGoogle Scholar
  47. 47.
    Wooten JB, Seeman JI, Hajaligol MR. Observation and characterization of cellulose pyrolysis intermediates by 13C CPMAS NMR. A new mechanistic model. Energy Fuel. 2004;18:1–15.CrossRefGoogle Scholar
  48. 48.
    Demirbas A. Effect of Temperature on pyrolysis products from biomass. Energy Sources Part A. 2007;29:329–36.CrossRefGoogle Scholar
  49. 49.
    Gheorgue CB, Marculescu C, Badea A, Apostol T. Pyrolysis parameters influencing the bio-char generation from wooden biomass. UPB Sci Bull Ser C. 2010;72:29–38.Google Scholar
  50. 50.
    Mani S, Tabil LG, Sokhansanj S. Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass Bioenergy. 2006;30:648–54.CrossRefGoogle Scholar
  51. 51.
    Obernberger I, Thek G. Physical characterization and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass Bioenergy. 2004;27:653–69.CrossRefGoogle Scholar
  52. 52.
    Felfli FF, Luengo CA, Rocha JD. Briquetes torrificados: viabilidade técnico-económica e perspectivas no mercado brasileiro. An. 5. Enc. Energ. Meio Rural, 2004.
  53. 53.
    Hilliring B. Price trends in the Swedish wood fuel market. Biomass Bioenergy. 1997;12:41–51.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Lidya B. Santos
    • 1
  • Maria V. Striebeck
    • 2
  • Marisa S. Crespi
    • 3
  • Jorge M. V. Capela
    • 3
  • Clovis A. Ribeiro
    • 3
  • Marcelo De Julio
    • 1
  1. 1.Building Engineering DepartmentAeronautical Institute of TechnologySão José dos CamposBrazil
  2. 2.Chemical Engineering DepartmentNational University of Buenos Aires Province Center College EngineeringOlavarriaArgentina
  3. 3.Analytical Chemistry DepartmentSão Paulo State University IQ/UNESPAraraquaraBrazil

Personalised recommendations