Skip to main content
Log in

Toward improved heat transfer performance of annular heat exchangers with water/ethylene glycol-based nanofluids containing graphene nanoplatelets

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A novel synthesis procedure is presented for preparing functionalized graphene nanoplatelets (GNPs). Using sonication method, the functionalized GNPs are dispersed in water-ethylene glycol to prepare water–ethylene glycol-based functionalized GNP nanofluids. Meanwhile, the thermophysical properties of the prepared nanofluids, i.e., thermal conductivity, specific heat capacity, and rheological properties are investigated. As the second phase of study, the heat transfer performance of an annular channel is simulated and measured in the presence of the prepared nanofluids. To this end, a computational fluid dynamics study has been carried out to calculate the heat transfer rate as well as pressure drop of the well-dispersed nanofluids. Meanwhile, the effects of concentration and Reynolds number on the convective heat transfer coefficient have been investigated at constant wall temperature boundary condition under turbulent flow regime. Consist with the results, the convective heat transfer coefficient of nanofluids are significantly higher than that of the base-fluid. The novel type of nanofluid reveals promising potential for use as an advanced working fluid in future heat transfer applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

c p :

Specific heat capacity at constant pressure (J kg−1 K−1)

d p :

Nanoparticle diameter (m)

k :

Thermal conductivity (W m−1 K−1)

Nu :

Nusselt number (h D λ−1)

p :

Static pressure (N m−2)

Pr :

Liquid Prandtl number

q″:

Heat flux (w m−2)

Re :

Reynolds number

T :

Temperature (K)

V :

Velocity (m s−1)

u′:

Fluctuating part of velocity (m s−1)

µ :

Dynamic viscosity (kg m−1 s−1)

ρ :

Density (kg m−3)

φ :

Particle volume fraction

eff:

Effective

f:

Fluid

s:

Solid

w:

Wall

–:

Mean

0:

Initial

References

  1. Mohammed HA. Laminar mixed convection heat transfer in a vertical circular tube under buoyancy-assisted and opposed flows. Energy Convers Manag. 2008;49(8):2006–15.

    Article  CAS  Google Scholar 

  2. Abu-Nada E, Oztop HF. Effects of inclination angle on natural convection in enclosures filled with Cu–water nanofluid. Int J Heat Fluid Flow. 2009;30(4):669–78.

    Article  CAS  Google Scholar 

  3. Duka B, Ferrario C, Passerini A, Piva S. Non-linear approximations for natural convection in a horizontal annulus. Int J Non-Linear Mech. 2007;42(9):1055–61.

    Article  Google Scholar 

  4. Passerini A, Ferrario C, Thäter G. Natural convection in horizontal annuli: a lower bound for the energy. J Eng Math. 2008;62(3):247–59.

    Article  Google Scholar 

  5. Kashani A, Jalali-vahid D, Hossainpour S. Numerical study of laminar forced convection of water/Al2O3 nanofluid in an annulus with constant wall temperature. IIUM Eng J. 2013;14(1).

  6. Amiri A, Sadri R, Shanbedi M, Ahmadi G, Kazi S, Chew B, et al. Synthesis of ethylene glycol-treated graphene nanoplatelets with one-pot, microwave-assisted functionalization for use as a high performance engine coolant. Energy Convers Manag. 2015;101:767–77.

    Article  CAS  Google Scholar 

  7. Heris SZ, Fallahi M, Shanbedi M, Amiri A. Heat transfer performance of two-phase closed thermosyphon with oxidized CNT/water nanofluids. Heat Mass Transf. 2016;52(1):85–93.

    Article  Google Scholar 

  8. Shanbedi M, Heris SZ, Amiri A, Adyani S, Alizadeh M, Baniadam M. Optimization of the thermal efficiency of a two-phase closed thermosyphon using active learning on the human algorithm interaction. Numer Heat Transf Part A Appl. 2014;66(8):947–62.

    Article  Google Scholar 

  9. Solangi K, Kazi S, Luhur M, Badarudin A, Amiri A, Sadri R, et al. A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids. Energy. 2015;89:1065–86.

    Article  CAS  Google Scholar 

  10. Toghraie D, Chaharsoghi VA, Afrand M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J Therm Anal Calorim. 2016;125(1):527–35.

    Article  CAS  Google Scholar 

  11. Mashaei PR, Shahryari M, Madani S. Numerical hydrothermal analysis of water–Al2O3 nanofluid forced convection in a narrow annulus filled by porous medium considering variable properties: application to cylindrical heat pipes. J Therm Anal Calorim. 2016. doi:10.1007/s10973-016-5550-3.

  12. Amiri A, Arzani HK, Kazi S, Chew B, Badarudin A. Backward-facing step heat transfer of the turbulent regime for functionalized graphene nanoplatelets based water–ethylene glycol nanofluids. Int J Heat Mass Transf. 2016;97:538–46.

    Article  CAS  Google Scholar 

  13. Amiri A, Shanbedi M, Yarmand H, Arzani HK, Gharehkhani S, Montazer E, et al. Laminar convective heat transfer of hexylamine-treated MWCNTs-based turbine oil nanofluid. Energy Convers Manag. 2015;105:355–67.

    Article  CAS  Google Scholar 

  14. Arzani HK, Amiri A, Kazi S, Chew B, Badarudin A. Experimental and numerical investigation of thermophysical properties, heat transfer and pressure drop of covalent and noncovalent functionalized graphene nanoplatelet-based water nanofluids in an annular heat exchanger. Int Commun Heat Mass Transf. 2015;68:267–75.

    Article  CAS  Google Scholar 

  15. Arzani HK, Amiri A, Kazi S, Chew B, Badarudin A. Experimental investigation of thermophysical properties and heat transfer rate of covalently functionalized MWCNT in an annular heat exchanger. Int Commun Heat Mass Transf. 2016;75:67–77.

    Article  CAS  Google Scholar 

  16. Zeinali S, Heris MN, Etemad SGh. Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. Int J Heat Fluid Flow. 2007;28:203–10.

    Article  Google Scholar 

  17. Heris SZ, Etemad SG, Esfahany MN. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int Commun Heat Mass Transf. 2006;33(4):529–35.

    Article  Google Scholar 

  18. Shanbedi M, Amiri A, Rashidi S, Heris SZ, Baniadam M. Thermal performance prediction of two-phase closed thermosyphon using adaptive neuro-fuzzy inference system. Heat Transf Eng. 2015;36(3):315–24.

    Article  CAS  Google Scholar 

  19. Amiri A, Shanbedi M, AliAkbarzade MJ. The specific heat capacity, effective thermal conductivity, density, and viscosity of coolants containing carboxylic acid functionalized multi-walled carbon nanotubes. J Dispersion Sci Technol. 2016;37(7):949–55.

    Article  CAS  Google Scholar 

  20. Esfe MH, Saedodin S. Turbulent forced convection heat transfer and thermophysical properties of Mgo–water nanofluid with consideration of different nanoparticles diameter, an empirical study. J Therm Anal Calorim. 2015;119(2):1205–13.

    Article  Google Scholar 

  21. Beheshti A, Shanbedi M, Heris SZ. Heat transfer and rheological properties of transformer oil-oxidized MWCNT nanofluid. J Therm Anal Calorim. 2014;118(3):1451–60.

    Article  CAS  Google Scholar 

  22. Bahiraei M. A numerical study of heat transfer characteristics of CuO–water nanofluid by Euler–Lagrange approach. J Therm Anal Calorim. 2016;123(2):1591–9.

    Article  CAS  Google Scholar 

  23. Kumar BR, Basheer NS, Jacob S, Kurian A, George SD. Thermal-lens probing of the enhanced thermal diffusivity of gold nanofluid-ethylene glycol mixture. J Therm Anal Calorim. 2015;119(1):453–60.

    Article  Google Scholar 

  24. Ahammed N, Asirvatham LG, Wongwises S. Effect of volume concentration and temperature on viscosity and surface tension of graphene–water nanofluid for heat transfer applications. J Therm Anal Calorim. 2016;123(2):1399–409.

    Article  CAS  Google Scholar 

  25. Hosseinzadeh M, Heris SZ, Beheshti A, Shanbedi M. Convective heat transfer and friction factor of aqueous Fe3O4 nanofluid flow under laminar regime. J Therm Anal Calorim. 2016;124(2):827–38.

    Article  CAS  Google Scholar 

  26. Esfe MH, Ahangar MRH, Toghraie D, Hajmohammad MH, Rostamian H, Tourang H. Designing artificial neural network on thermal conductivity of Al2O3–water–EG (60–40 %) nanofluid using experimental data. J Therm Anal Calorim. 2016. doi:10.1007/s10973-016-5469-8.

  27. Chol S. Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ Fed. 1995;231:99–106.

    Google Scholar 

  28. Barbés B, Páramo R, Blanco E, Casanova C. Thermal conductivity and specific heat capacity measurements of CuO nanofluids. J Therm Anal Calorim. 2014;115(2):1883–91.

    Article  Google Scholar 

  29. Roy G, Nguyen CT, Lajoie P-R. Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids. Superlattices Microstruct. 2004;35(3):497–511.

    Article  CAS  Google Scholar 

  30. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46(19):3639–53.

    Article  CAS  Google Scholar 

  31. Akbarinia A, Behzadmehr A. Numerical study of laminar mixed convection of a nanofluid in horizontal curved tubes. Appl Therm Eng. 2007;27(8):1327–37.

    Article  CAS  Google Scholar 

  32. Akbarinia A, Laur R. Investigating the diameter of solid particles effects on a laminar nanofluid flow in a curved tube using a two phase approach. Int J Heat Fluid Flow. 2009;30(4):706–14.

    Article  CAS  Google Scholar 

  33. Talebi F, Mahmoudi AH, Shahi M. Numerical study of mixed convection flows in a square lid-driven cavity utilizing nanofluid. Int Commun Heat Mass Transf. 2010;37(1):79–90.

    Article  Google Scholar 

  34. Shahi M, Mahmoudi AH, Talebi F. Numerical study of mixed convective cooling in a square cavity ventilated and partially heated from the below utilizing nanofluid. Int Commun Heat Mass Transf. 2010;37(2):201–13.

    Article  CAS  Google Scholar 

  35. Sundar LS, Sharma K. Turbulent heat transfer and friction factor of Al2O3 nanofluid in circular tube with twisted tape inserts. Int J Heat Mass Transf. 2010;53(7):1409–16.

    Article  CAS  Google Scholar 

  36. Amiri A, Shanbedi M, Chew B, Kazi S, Solangi K. Toward improved engine performance with crumpled nitrogen-doped graphene based water–ethylene glycol coolant. Chem Eng J. 2016;289:583–95.

    Article  CAS  Google Scholar 

  37. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2000;21(1):58–64.

    Article  CAS  Google Scholar 

  38. Manninen M, Taivassalo V, Kallio S. On the mixture model for multiphase flow. Espoo: Technical Research Centre of Finland; 1996.

    Google Scholar 

  39. Crowe LM, Reid DS, Crowe JH. Is trehalose special for preserving dry biomaterials? Biophys J. 1996;71(4):2087.

    Article  CAS  Google Scholar 

  40. Ishii M. Thermo-fluid dynamic theory of two-phase flow. NASA STI/Recon Tech Rep A. 1975;75:29657.

    Google Scholar 

  41. Xu H-K. Viscosity approximation methods for nonexpansive mappings. J Math Anal Appl. 2004;298(1):279–91.

    Article  Google Scholar 

  42. Lotfi R, Saboohi Y, Rashidi A. Numerical study of forced convective heat transfer of nanofluids: comparison of different approaches. Int Commun Heat Mass Transf. 2010;37(1):74–8.

    Article  CAS  Google Scholar 

  43. Bianco V, Chiacchio F, Manca O, Nardini S. Numerical investigation of nanofluids forced convection in circular tubes. Appl Therm Eng. 2009;29(17):3632–42.

    Article  CAS  Google Scholar 

  44. Mirmasoumi S, Behzadmehr A. Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube. Int J Heat Fluid Flow. 2008;29(2):557–66.

    Article  CAS  Google Scholar 

  45. Mirmasoumi S, Behzadmehr A. Numerical study of laminar mixed convection of a nanofluid in a horizontal tube using two-phase mixture model. Appl Therm Eng. 2008;28(7):717–27.

    Article  CAS  Google Scholar 

  46. Abu-Nada E, Masoud Z, Hijazi A. Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids. Int Commun Heat Mass Transf. 2008;35(5):657–65.

    Article  CAS  Google Scholar 

  47. Izadi M, Behzadmehr A, Jalali-Vahida D. Numerical study of developing laminar forced convection of a nanofluid in an annulus. Int J Therm Sci. 2009;48(11):2119–29.

    Article  CAS  Google Scholar 

  48. Amiri A, Shanbedi M, Savari M, Chew B, Kazi S. Cadmium ion sorption from aqueous solutions by high surface area ethylenediaminetetraacetic acid- and diethylene triamine pentaacetic acid-treated carbon nanotubes. RSC Adv. 2015;5:71144–52.

    Article  CAS  Google Scholar 

  49. Amiri A, Shanbedi M, Ahmadi G, Eshghi H, Chew BT, Kazi SN. Microwave-assisted direct coupling of graphene nanoplatelets with poly ethylene glycol and 4-phenylazophenol molecules for preparing stable-colloidal system. Colloids Surf A. 2015;487:131–41. doi:10.1016/j.colsurfa.2015.09.032.

    Article  CAS  Google Scholar 

  50. Behzadmehr A, Saffar-Avval M, Galanis N. Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach. Int J Heat Fluid Flow. 2007;28(2):211–9.

    Article  CAS  Google Scholar 

  51. Shih TM. Numerical heat transfer. Boca Raton: CRC Press; 1984.

    Google Scholar 

  52. Launder BE, Spalding D. The numerical computation of turbulent flows. Comput Methods Appl Mech Eng. 1974;3(2):269–89.

    Article  Google Scholar 

  53. Aravind SJ, Baskar P, Baby TT, Sabareesh RK, Das S, Ramaprabhu S. Investigation of structural stability, dispersion, viscosity, and conductive heat transfer properties of functionalized carbon nanotube based nanofluids. J Phys Chem C. 2011;115(34):16737–44.

    Article  CAS  Google Scholar 

  54. Ko GH, Heo K, Lee K, Kim DS, Kim C, Sohn Y, et al. An experimental study on the pressure drop of nanofluids containing carbon nanotubes in a horizontal tube. Int J Heat Mass Transf. 2007;50(23):4749–53.

    Article  CAS  Google Scholar 

  55. Aravind SJ, Ramaprabhu S. Graphene–multiwalled carbon nanotube-based nanofluids for improved heat dissipation. RSC Adv. 2013;3(13):4199–206.

    Article  CAS  Google Scholar 

  56. Ding Y, Alias H, Wen D, Williams RA. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf. 2006;49(1):240–50.

    Article  CAS  Google Scholar 

  57. Samira P, Saeed ZH, Motahare S, Mostafa K. Pressure drop and thermal performance of CuO/ethylene glycol (60%)–water (40%) nanofluid in car radiator. Korean J Chem Eng. 2015;32(4):609–16.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge University of Malaya Research Grants: RP012A-13AET, FP028-2014B, and High Impact Research Grant of UM.C/625/1/HIR/MOHE/ENG/45, as well as Faculty of Engineering, University of Malaya, Malaysia, for support to conduct this research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hamed Khajeh Arzani, Ahmad Amiri or S. N. Kazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khajeh Arzani, H., Amiri, A., Arzani, H.K. et al. Toward improved heat transfer performance of annular heat exchangers with water/ethylene glycol-based nanofluids containing graphene nanoplatelets. J Therm Anal Calorim 126, 1427–1436 (2016). https://doi.org/10.1007/s10973-016-5663-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5663-8

Keywords

Navigation