Journal of Thermal Analysis and Calorimetry

, Volume 126, Issue 3, pp 1023–1043 | Cite as

Composition and microstructural changes in an aged cement pastes upon two heating–cooling regimes, as studied by thermal analysis and X-ray diffraction

  • Hassen Sabeur
  • Gérard Platret
  • Julien Vincent


This paper studies the microstructural changes in a 2-year-old cement paste heated up to various temperature up to 1000 °C in steps of 100 °C for a constant period of 6 h by TG/DTG and XRD. Two cooling regimes are applied: air- and desiccator-cooling regime. The impact of ageing on the microstructure of the heated specimens is analysed by comparison with a cement paste cured at 28 days. The result shows higher amounts of portlandite and carbonate calcium for the aged cement paste. The new portlandite formed during cooling continues to exist until the 1000 °C temperature plateau. The decomposition of the latter portlandite induces higher quantities of lime, and then higher mass loss in the case of the air-cooling regime compared to the desiccator one. Nevertheless, the XRD shows that the peak’s intensity of lime is lower in the case of air-cooling regime. The CSH dehydration to β-C2S and C3S becomes significant above 600 °C and the corresponding rate increases with increasing temperature. An increase in the total mass loss and in the crystallinity at 900 and 1000 °C, compared to 800 °C, is noted.


High temperature Cooling regime Cement paste Thermal analysis X-ray diffraction 


  1. 1.
    Mendes A, Sanjayan J, Collins F. Phase transformations and mechanical strength of OPC/Slag pastes submitted to high temperature. Mater Struct. 2007;41:345–50.CrossRefGoogle Scholar
  2. 2.
    Midgley HG. The use of thermal analysis methods in assessing the quality of high alumina cement concrete. J Therm Anal. 1978;13:515–24.CrossRefGoogle Scholar
  3. 3.
    Baroghel-Bouny V. Caractérisation microstructurale et hydrique des pâtes de ciment et des bétons ordinaires et à très hautes performances, Ph.D. thesis, Ecole Nationale des Ponts et Chaussées; 1994.Google Scholar
  4. 4.
    Krzys C. Analyse de trois méthodes de détermination du degré d’hydratation du béton (Training report). Service Physico-chimique du Laboratoire Centrale des Ponts et Chaussées, Paris; 1999.Google Scholar
  5. 5.
    Harmathy TZ. Determining the temperature history of concrete InstitutNaviere constructions following fire exposure. ACI J. 1968;65(11):959–64.Google Scholar
  6. 6.
    Raina SJ, Vishwanathan VN, Ghosh SN. Instrumental techniques for investigation of damaged concrete. Indian Concr J. 1978;52:147–9.Google Scholar
  7. 7.
    Handoo SK, Agarwal S, Agarwal SK, Ahluwalia SC. Effect of temperature on the physico-chemical characteristics of hardened concrete. In Justnes H, editor. 10th International Congress of Chemistry of Cement, Gothenburg, Sweden, June 2–6 4IV 067; 1997. p. 4.Google Scholar
  8. 8.
    Handoo SK, Agarwal S, Agarwal SK. Physicochemical, mineralogical, morphological characteristics of concrete exposed to elevated temperatures. Cem Concr Res. 2002;32(7):1009–18.CrossRefGoogle Scholar
  9. 9.
    Alarcon-Ruiza L, Platret G, Massieu E, Ehrlacher A. The use of thermal analysis in assessing the effect of temperature on a cement paste. Cem Concr Res. 2005;35:609–13.CrossRefGoogle Scholar
  10. 10.
    Piasta J, Sawicz Z, Rudzinski L. Changes in the structure of hardened cement paste due to high temperature. Matériaux et constructions; 1984.Google Scholar
  11. 11.
    Pasquero D. Contribution à l’étude de la déshydratation dans les pâtes de ciment soumises à haute température. Ph.D. thesis, ENPC, Paris; 2004.Google Scholar
  12. 12.
    Stepkowska ET, Blanes JM, Franco F, Real C, Prez-Rodrguez JL. Phase transformation on heating of an aged cement paste. Thermochim Acta. 2004;420(1–2):79–87.CrossRefGoogle Scholar
  13. 13.
    Castellote M, Alonso C, Andrade C, Turrillas X, Campo J. Composition and microstructural changes of cement pastes upon heating, as studied by neutron diffraction. Cem Concr Res. 2004;34(9):1633–44.CrossRefGoogle Scholar
  14. 14.
    Alonso C, Fernandez L. Dehydration and rehydration processes of cement paste exposed to high temperature environments. J Mater Sci. 2004;39(9):3015–24.CrossRefGoogle Scholar
  15. 15.
    Gai-FeiPeng and Zhi-Shan Huang. Change in microstructure of hardened cement paste subjected to elevated temperatures. Constr Build Mater. 2008;22(4):593–9.CrossRefGoogle Scholar
  16. 16.
    Qi Zhang; Guang Ye. Quantitative analysis of phase transition of heated Portland cement paste. J Therm Anal Calorim. 2013;112:629–36.CrossRefGoogle Scholar
  17. 17.
    Chan YN, Peng GF, Chan KW. Comparison between high strength concrete and normal strength concrete subjected to high temperature. Mater Struct. 1996;29:616–9.CrossRefGoogle Scholar
  18. 18.
    Felicetti R, Gambarova P. Effects of high temperature on the residual compressive strength of high-strength siliceous concretes. ACI Mater J. 1998;95(4):395–406.Google Scholar
  19. 19.
    Chan YN, Luo X, Sun W. Compressive strength and pore structure of high performance concrete after exposure to high temperature. Mater Struct. 2000;33:294–8.CrossRefGoogle Scholar
  20. 20.
    Husem M. The effects of high temperature on compressive and flexural strengths of ordinary and high-performance concrete. Fire Saf J. 2006;41(2):155–63.CrossRefGoogle Scholar
  21. 21.
    Ma Q, Guo R, Zhao Z, Lin Z, He K. Mechanical properties of concrete at high temperature—a review. Constr Build Mater. 2015;93:371–83.CrossRefGoogle Scholar
  22. 22.
    Zhai Y, Deng Z, Li N, Xu R. Study on compressive mechanical capabilities of concrete after high temperature exposure and thermo-damage constitutive model. Constr Build Mater. 2014;15:777–82.CrossRefGoogle Scholar
  23. 23.
    Yüzer N, Aköza F, DokuzerÖztürk L. Compressive strength–color change relation in mortars at high temperature. Cem Concr Res. 2004;34(10):1803–7.CrossRefGoogle Scholar
  24. 24.
    Sabeur H, Meftah F, Colina H, Plateret G. Correlation between transient creep of concrete and its dehydration. Mag Concr Res. 2006;60(3):157–63.CrossRefGoogle Scholar
  25. 25.
    Sabeur H. On the modeling of the dehydration induced transient creep of concrete at high temperatures. Mater Struct. 2011;44:1609–27.CrossRefGoogle Scholar
  26. 26.
    Sabeur H, Meftah F. Dehydration creep of concrete at high temperatures. Mater Struct. 2008;41:17–30.CrossRefGoogle Scholar
  27. 27.
    Platret G. Suivi de l’hydratation du ciment et de l’évolution des phases solides dans les bétons par analyse thermique. Caractéristiques microstructurales et propriétés relatives à la durabilité des bétons. Méthodes de mesure et d’essai de laboratoire, Méthodes d’essai No.58, Laboratoire Central des Ponts et Chaussées, Février; 2002.Google Scholar
  28. 28.
    Noumowé A. Effet des hautes températures (20°C–600°C) sur le béton. Ph.D. thesis, Institut National des Sciences Appliquées; 1995.Google Scholar
  29. 29.
    Richard N. Structure et propriétés élastiques des phases cimentières à base de monoaluminate de calcium. Ph.D. thesis, Univ. Paris VI; 1999.Google Scholar
  30. 30.
    Khoury GA. Compressive strength of concrete at high temperatures: a reassessment. Mag Concr Res. 1992;44(161):291–309.CrossRefGoogle Scholar
  31. 31.
    Scrivener KL, Fullmann T, Gallucci E, Walenta G, Bermejo E. Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods. Cem Concr Res. 2004;34(9):1541–7.CrossRefGoogle Scholar
  32. 32.
    Hamlin MJ. Refinements to colloid model of C–S–H in cement: cm-II. Cem Concr Res. 2008;38(3):275–89.CrossRefGoogle Scholar
  33. 33.
    Hamlin MJ. A model for the microstructure of calcium silicate hydrate in cement paste. Cem Concr Res. 2000;30(1):101–16.CrossRefGoogle Scholar
  34. 34.
    Delhomme F, Ambroise J, Limam A. Effects of high temperatures on mortar specimens containing Portland cement and GGBFS. Mater Struct. 2012;45(11):1685–92.CrossRefGoogle Scholar
  35. 35.
    Hager I. Comportement à haute température des bétons à haute performance: évolution des principales propriétés mécaniques. Ph.D. Thesis, ENPC, France; 2004.Google Scholar
  36. 36.
    Mendes A, Sanjayan J, Collins F. Long-term progressive deterioration following fire exposure of OPC versus slag blended cement pastes. Mater Struct. 2009;42:95–101.CrossRefGoogle Scholar
  37. 37.
    Shimada Y, Young JF. Structural changes during thermal dehydration of ettringite. Adv Cem Res. 2001;13(2):77–81.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Hassen Sabeur
    • 1
  • Gérard Platret
    • 2
  • Julien Vincent
    • 2
  1. 1.Laboratory of Civil EngineeringEl Manar University-National Engineering School of TunisTunisTunisia
  2. 2.Université Paris-EstMarne la Vallée Cedex 2France

Personalised recommendations