Skip to main content
Log in

Thermal behavior of quinoxaline 1,4-di-N-oxide derivatives

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal hazard of a series of quinoxaline 1,4-di-N-oxide derivatives, designed to act as prodrugs, whose chemical structure undergoes a very rapid decomposition, has been evaluated. The fusion and thermal decomposition of the compounds have been studied by thermogravimetry, differential scanning calorimetry, and mass spectrometry (MS-DIP). The results obtained indicate that the decomposition process from the loss of one of the oxygens linked to a nitrogen of the quinoxaline involves the release of a large quantity of vapor in a very small time interval. The enthalpy is higher than 300 J g−1; in some cases, it is around 1000 J g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bestraten M. Nota Técnica de Prevención, NTP 302 “Reactividad e inestabilidad química: análisis termodinámico preliminar” Ministerio de Trabajo y Asuntos Sociales. España. 1999.

  2. Calvet S. Nota Técnica de Prevención, NTP 527 “Reacciones químicas exotérmicas (I): factores de riesgo y prevención” Ministerio de Trabajo y Asuntos Sociales. España. 1999.

  3. You ML, Tseng JM, Liu MY, Shu CM. Runaway reaction of lauroyl peroxide with nitric acid by DSC. J Therm Anal Calorim. 2010;102:535–9.

    Article  CAS  Google Scholar 

  4. Hsueh KH, Chen WC, Liu SH, Shu CM. Thermal parameters study of 1,1-bis(tert-butylperoxy)cyclohexane at low heating rates with differential scanning calorimetry. J Therm Anal Calorim. 2014;118:1675–83.

    Article  CAS  Google Scholar 

  5. Cheng SY, Tseng JM, Lin SY, Gupta JP, Shu CM. Runaway reaction on tert-butyl peroxybenzoate by DSC test. J Therm Anal Calorim. 2008;93:121–6.

    Article  CAS  Google Scholar 

  6. McIntosh RD, Waldram SP. Obtaining more, and better, information from simple ramped temperature screening tests. J Therm Anal Calorim. 2003;73:35–52.

    Article  CAS  Google Scholar 

  7. Tsai YT, Cao CR, Chen WT, Chou WL, You ML. Using calorimetric approaches and thermal analysis technology to evaluate critical runaway parameters of azobisisobutyronitrile. J Therm Anal Calorim. 2015;122:1151–7.

    Article  CAS  Google Scholar 

  8. Mathieu D. Significance of theoretical decomposition enthalpies for predicting thermal hazards. J Chem. 2015; Article ID 158794: 1:12.

  9. Townsend I. Basic strategy for the thermal stability assessment of pharmaceutical synthetic intermediates and products. J Therm Anal Calorim. 1991;37:2031–66.

    Article  CAS  Google Scholar 

  10. Anderson H, Mentel J. Adiabatic decomposition kinetics by non-linear optimization. J Therm Anal Calorim. 1994;41:471–81.

    Article  CAS  Google Scholar 

  11. Ende DJA, Ripin DHB, Weston NP. Thermal stability investigation of pyridine substituted tosyl oximes. Thermochim Acta. 2004;419:83–8.

    Article  Google Scholar 

  12. Duh YS, Yo JM, Lee WL, Kao CS, Hsu JM. Thermal decompositions of dialkyl peroxides studied by DSC. J Therm Anal Calorim. 2014;118:339–47.

    Article  CAS  Google Scholar 

  13. Lv JY, Chen WH, Chen YT, Yan JJ. Thermal risk evaluation on decomposition processes for four organic peroxides. Thermochim Acta. 2014;589:11–8.

    Article  CAS  Google Scholar 

  14. Liu SH, Chen YC, Hou HY. Thermal runaway hazard studies for ABVN mixed with acids or alkalines by DSC, TAM III, and VSP2. J Therm Anal Calorim. 2015;122:1107–16.

    Article  CAS  Google Scholar 

  15. Hou HY, Duh YS, Lin WH, Shu CM. Reactive incompatibility of cumene hydroperoxide mixed with alkaline solutions. J Therm Anal Calorim. 2006;85:145–50.

    Article  CAS  Google Scholar 

  16. Kulkarni PB, Purandare GN, Nair JK, Talawar MB, Mukundan T, Asthana SN. Synthesis, characterization, thermolysis and performance evaluation studies on alkali metal salts of TABA and NTO. J Hazard Mater. 2005;119(53):61.

    Google Scholar 

  17. Carta A, Corona P, Loriga M. Quinoxaline 1,4-dioxide: a versatile scaffold endowed with manifold activities. Curr Med Chem. 2005;12:2259–72.

    Article  CAS  Google Scholar 

  18. Vicente E, Villar R, Pérez-Silanes S, Aldana I, Goldman RC, Monge A. Quinoxaline 1,4-di-N-oxide and the potential for treating tuberculosis. Infect Dis Drug Targ. 2011;11:196–204.

    Article  CAS  Google Scholar 

  19. Moreno E, Ancizu S, Perez-Silanes S, Torres E, Aldana I, Monge A. Synthesis and antimycobacterial activity of new quinoxaline-2-carboxamide 1,4-di-N-oxide derivatives. Eur J Med Chem. 2010;45:4418–26.

    Article  CAS  Google Scholar 

  20. Ancizu S, Moreno E, Solano B, Villar R, Burguete A, Torres E, Perez-Silanes S, Aldana I, Monge A. New 3-methylquinoxaline-2-carboxamide 1,4-di-N-oxide derivatives as anti-Mycobacterium tuberculosis agents. Eur J Med Chem. 2010;18:2713–9.

    CAS  Google Scholar 

  21. Torres E, Moreno E, Ancizu S, Barea C, Galiano S, Aldana I, Monge A, Perez-Silanes S. New 1,4-di-N-oxide-quinoxaline-2-ylmethylene isonicotinic acid hydrazide derivatives as anti-Mycobacterium tuberculosis agents. Bioorg Med Chem Lett. 2011;221:3699–703.

    Article  Google Scholar 

  22. Torres E, Moreno E, Galiano S, Devarapally G, Crawford PW, Azqueta A, Arbillaga L, Varela J, Birriel E, Di Maio R, Cerecetto H, Gonzalez M, Aldana I, Monge A, Perez-Silanes S. Novel quinoxaline 1,4-di-N-oxide derivatives as new potential antichagasic agents. Eur J Med Chem. 2013;66:324–34.

    Article  CAS  Google Scholar 

  23. Millar RW, Philbin SP, Claridge RP, Hamid J. Studies of novel heterocyclic insensitive high explosive compounds: pyridines, pyrimidines, pyrazines and their bicyclic analogues. Propell Explos Pyrotech. 2004;29:81–91.

    Article  CAS  Google Scholar 

  24. Tsai YT, Lin SY, Tong JW, Chen WC, Chen WT, Shu CM. Incompatible hazard investigation of a cycloaliphatic epoxy resin using green analytical method. J Therm Anal Calorim. 2015;122:1135–41.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Lizarraga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lizarraga, E., Zabaleta, C. & Palop, J.A. Thermal behavior of quinoxaline 1,4-di-N-oxide derivatives. J Therm Anal Calorim 127, 1655–1661 (2017). https://doi.org/10.1007/s10973-016-5632-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5632-2

Keywords

Navigation