Journal of Thermal Analysis and Calorimetry

, Volume 127, Issue 2, pp 1655–1661 | Cite as

Thermal behavior of quinoxaline 1,4-di-N-oxide derivatives

  • Elena Lizarraga
  • Camino Zabaleta
  • Juan A. Palop


The thermal hazard of a series of quinoxaline 1,4-di-N-oxide derivatives, designed to act as prodrugs, whose chemical structure undergoes a very rapid decomposition, has been evaluated. The fusion and thermal decomposition of the compounds have been studied by thermogravimetry, differential scanning calorimetry, and mass spectrometry (MS-DIP). The results obtained indicate that the decomposition process from the loss of one of the oxygens linked to a nitrogen of the quinoxaline involves the release of a large quantity of vapor in a very small time interval. The enthalpy is higher than 300 J g−1; in some cases, it is around 1000 J g−1.


Thermal analysis Decomposition Thermogravimetry Thermal hazard Explosive 


  1. 1.
    Bestraten M. Nota Técnica de Prevención, NTP 302 “Reactividad e inestabilidad química: análisis termodinámico preliminar” Ministerio de Trabajo y Asuntos Sociales. España. 1999.Google Scholar
  2. 2.
    Calvet S. Nota Técnica de Prevención, NTP 527 “Reacciones químicas exotérmicas (I): factores de riesgo y prevención” Ministerio de Trabajo y Asuntos Sociales. España. 1999.Google Scholar
  3. 3.
    You ML, Tseng JM, Liu MY, Shu CM. Runaway reaction of lauroyl peroxide with nitric acid by DSC. J Therm Anal Calorim. 2010;102:535–9.CrossRefGoogle Scholar
  4. 4.
    Hsueh KH, Chen WC, Liu SH, Shu CM. Thermal parameters study of 1,1-bis(tert-butylperoxy)cyclohexane at low heating rates with differential scanning calorimetry. J Therm Anal Calorim. 2014;118:1675–83.CrossRefGoogle Scholar
  5. 5.
    Cheng SY, Tseng JM, Lin SY, Gupta JP, Shu CM. Runaway reaction on tert-butyl peroxybenzoate by DSC test. J Therm Anal Calorim. 2008;93:121–6.CrossRefGoogle Scholar
  6. 6.
    McIntosh RD, Waldram SP. Obtaining more, and better, information from simple ramped temperature screening tests. J Therm Anal Calorim. 2003;73:35–52.CrossRefGoogle Scholar
  7. 7.
    Tsai YT, Cao CR, Chen WT, Chou WL, You ML. Using calorimetric approaches and thermal analysis technology to evaluate critical runaway parameters of azobisisobutyronitrile. J Therm Anal Calorim. 2015;122:1151–7.CrossRefGoogle Scholar
  8. 8.
    Mathieu D. Significance of theoretical decomposition enthalpies for predicting thermal hazards. J Chem. 2015; Article ID 158794: 1:12.Google Scholar
  9. 9.
    Townsend I. Basic strategy for the thermal stability assessment of pharmaceutical synthetic intermediates and products. J Therm Anal Calorim. 1991;37:2031–66.CrossRefGoogle Scholar
  10. 10.
    Anderson H, Mentel J. Adiabatic decomposition kinetics by non-linear optimization. J Therm Anal Calorim. 1994;41:471–81.CrossRefGoogle Scholar
  11. 11.
    Ende DJA, Ripin DHB, Weston NP. Thermal stability investigation of pyridine substituted tosyl oximes. Thermochim Acta. 2004;419:83–8.CrossRefGoogle Scholar
  12. 12.
    Duh YS, Yo JM, Lee WL, Kao CS, Hsu JM. Thermal decompositions of dialkyl peroxides studied by DSC. J Therm Anal Calorim. 2014;118:339–47.CrossRefGoogle Scholar
  13. 13.
    Lv JY, Chen WH, Chen YT, Yan JJ. Thermal risk evaluation on decomposition processes for four organic peroxides. Thermochim Acta. 2014;589:11–8.CrossRefGoogle Scholar
  14. 14.
    Liu SH, Chen YC, Hou HY. Thermal runaway hazard studies for ABVN mixed with acids or alkalines by DSC, TAM III, and VSP2. J Therm Anal Calorim. 2015;122:1107–16.CrossRefGoogle Scholar
  15. 15.
    Hou HY, Duh YS, Lin WH, Shu CM. Reactive incompatibility of cumene hydroperoxide mixed with alkaline solutions. J Therm Anal Calorim. 2006;85:145–50.CrossRefGoogle Scholar
  16. 16.
    Kulkarni PB, Purandare GN, Nair JK, Talawar MB, Mukundan T, Asthana SN. Synthesis, characterization, thermolysis and performance evaluation studies on alkali metal salts of TABA and NTO. J Hazard Mater. 2005;119(53):61.Google Scholar
  17. 17.
    Carta A, Corona P, Loriga M. Quinoxaline 1,4-dioxide: a versatile scaffold endowed with manifold activities. Curr Med Chem. 2005;12:2259–72.CrossRefGoogle Scholar
  18. 18.
    Vicente E, Villar R, Pérez-Silanes S, Aldana I, Goldman RC, Monge A. Quinoxaline 1,4-di-N-oxide and the potential for treating tuberculosis. Infect Dis Drug Targ. 2011;11:196–204.CrossRefGoogle Scholar
  19. 19.
    Moreno E, Ancizu S, Perez-Silanes S, Torres E, Aldana I, Monge A. Synthesis and antimycobacterial activity of new quinoxaline-2-carboxamide 1,4-di-N-oxide derivatives. Eur J Med Chem. 2010;45:4418–26.CrossRefGoogle Scholar
  20. 20.
    Ancizu S, Moreno E, Solano B, Villar R, Burguete A, Torres E, Perez-Silanes S, Aldana I, Monge A. New 3-methylquinoxaline-2-carboxamide 1,4-di-N-oxide derivatives as anti-Mycobacterium tuberculosis agents. Eur J Med Chem. 2010;18:2713–9.Google Scholar
  21. 21.
    Torres E, Moreno E, Ancizu S, Barea C, Galiano S, Aldana I, Monge A, Perez-Silanes S. New 1,4-di-N-oxide-quinoxaline-2-ylmethylene isonicotinic acid hydrazide derivatives as anti-Mycobacterium tuberculosis agents. Bioorg Med Chem Lett. 2011;221:3699–703.CrossRefGoogle Scholar
  22. 22.
    Torres E, Moreno E, Galiano S, Devarapally G, Crawford PW, Azqueta A, Arbillaga L, Varela J, Birriel E, Di Maio R, Cerecetto H, Gonzalez M, Aldana I, Monge A, Perez-Silanes S. Novel quinoxaline 1,4-di-N-oxide derivatives as new potential antichagasic agents. Eur J Med Chem. 2013;66:324–34.CrossRefGoogle Scholar
  23. 23.
    Millar RW, Philbin SP, Claridge RP, Hamid J. Studies of novel heterocyclic insensitive high explosive compounds: pyridines, pyrimidines, pyrazines and their bicyclic analogues. Propell Explos Pyrotech. 2004;29:81–91.CrossRefGoogle Scholar
  24. 24.
    Tsai YT, Lin SY, Tong JW, Chen WC, Chen WT, Shu CM. Incompatible hazard investigation of a cycloaliphatic epoxy resin using green analytical method. J Therm Anal Calorim. 2015;122:1135–41.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Department of Organic and Pharmaceutical Chemistry, Faculty of PharmacyUniversity of NavarraPamplonaSpain

Personalised recommendations