Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 126, Issue 3, pp 1417–1426 | Cite as

Influence of expandable graphite on flame retardancy and mechanical properties of organic–inorganic hybrid material based on sodium silicate and polyisocyanate

  • Jia-Ji Cheng
  • Fu-Bao Zhou
Article

Abstract

Influence of expandable graphite on flame retardancy and mechanical properties of organic–inorganic hybrid material based on sodium silicate and polyisocyanate has been investigated. The results of mechanical measurement show that adding expandable graphite decreases the maximum of the compressive strength from 5.98 to 1.49 MPa. The thermal property is evaluated by thermal conductivity test, thermogravimetric analysis. The results indicate that adding the expandable graphite increases thermal conductivity of composite and lowers maximum heat release rate. The material with expandable graphite has better flame retardancy than original material with an obvious decrease in heat release rate, fire spread and thermal decomposition rate. What is more, intumescent graphite has the obvious effect to suppress flame and prevent the composite from fire. Scanning electron microscope shows that many large particles and gaps appear after compression deformation.

Keywords

Expandable graphite Hybrid material Flame retardancy Mechanical properties Thermal properties 

Notes

Acknowledgements

This work was supported by the State Key Laboratory of Coal Resources and Safe Mining, CUMT (SKLCRSM12X04), the Program for Changjiang Scholars and Innovative Research Team in University (IRT13098); the Fundamental Research Funds for the Central Universities (2014XT02). This work is also a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and the First Outstanding Youth by the Organisation Department of the CPC Central Committee.

References

  1. 1.
    Luo YR. Comprehensive handbook of chemical bond energies. Florida: CRC Press; 2007.CrossRefGoogle Scholar
  2. 2.
    Shan CB, Liu YX. Performance of polyurethane grouting material modified by sodium silicate. Build Sci. 2011;27(9):48–51.Google Scholar
  3. 3.
    Abarca SAC, Floresb O, Pretteb ALG, Barrosob GS, Coana T, Motzb G, Machadoa RA. Synthesis and thermal characterization of silicon-based hybrid polymer. Chem Eng. 2013;32:1621–6.Google Scholar
  4. 4.
    Idumah CI, Hassan A, Affam AC. A review of recent developments in flammability of polymer nanocomposites. Rev Chem Eng. 2015;31(2):149–77.CrossRefGoogle Scholar
  5. 5.
    Hoang DQ, Kim J. Flame-retarding behaviors of novel spirocyclic organo-phosphorus compounds based on pentaerythritol. Macromol Res. 2015;23(7):579–91.CrossRefGoogle Scholar
  6. 6.
    Bar M, Alagirusamy R, Das A. Flame retardant polymer composites. Fiber Polym. 2015;16(4):705–17.CrossRefGoogle Scholar
  7. 7.
    Hanu LG, Simon GP, Mansouri J, Burford RP, Cheng YB. Development of polymer-ceramic composites for improved fire resistance. J Mater Process Technol. 2004;153:401–7.CrossRefGoogle Scholar
  8. 8.
    Berger G, Soubhye J, Meyer F. Halogen bonding in polymer science: from crystal engineering to functional supramolecular polymers and materials. Polym Chem. 2015;6(19):3559–80.CrossRefGoogle Scholar
  9. 9.
    Yu Y, Fu S, Song P, Luo XP, Jin YM, Lua FZ, Wu Q, Ye JW. Functionalized lignin by grafting phosphorus-nitrogen improves the thermal stability and flame retardancy of polypropylene. Polym Degrad Stab. 2012;97(4):541–6.CrossRefGoogle Scholar
  10. 10.
    Nguyen C, Kim J. Thermal stabilities and flame retardancies of nitrogen–phosphorus flame retardants based on bisphosphoramidates. Polym Degrad Stab. 2008;93(6):1037–43.CrossRefGoogle Scholar
  11. 11.
    Ravey M, Pearce EM. Flexible polyurethane foam. III. Phosphoric acid as a flame retardant. J Appl Polym Sci. 1999;74(5):1317–9.CrossRefGoogle Scholar
  12. 12.
    Shariatinia Z, Javeri N, Shekarriz S. Flame retardant cotton fibers produced using novel synthesized halogen-free phosphoramide nanoparticles. Carbohydr Polym. 2015;118:183–98.CrossRefGoogle Scholar
  13. 13.
    Malucelli G, Bosco F, Alongi J, Carosio F, Blasio A, Mollea C, Cuttica F, Casale A. Biomacromolecules as novel green flame retardant systems for textiles: an overview. Rsc Adv. 2014;4(86):46024–39.CrossRefGoogle Scholar
  14. 14.
    Tang W, Gu X, Jiang Y, Zhao J, Ma W, Jiang P, Zhang S. Flammability and thermal behaviors of polypropylene composite containing modified kaolinite. J Appl Polym Sci. 2015;132(14):1–7.CrossRefGoogle Scholar
  15. 15.
    Ramani A, Dahoe AE. On the performance and mechanism of brominated and halogen free flame retardants in formulations of glass fibre reinforced poly(butylene terephthalate). Polym Degrad Stab. 2014;104:71–86.CrossRefGoogle Scholar
  16. 16.
    Isitman NA, Kaynak C. Nanostructure of montmorillonite barrier layers: a new insight into the mechanism of flammability reduction in polymer nanocomposites. Polym Degrad Stab. 2011;96(12):2284–9.CrossRefGoogle Scholar
  17. 17.
    Duquesne S, Bras ML, Bourbigot S, Delobel R, Vezin H, Camino G, Berend E, Lindsay C, Roels T. Expandable graphite: a fire retardant additive for polyurethane coatings. Fire Mater. 2003;27(3):103–17.CrossRefGoogle Scholar
  18. 18.
    Ye L, Meng XY, Ji X, Li ZM, Tang JH. Synthesis and characterization of expandable graphite–poly(methyl methacrylate) composite particles and their application to flame retardation of rigid polyurethane foams. Polym Degrad Stab. 2009;94(6):971–9.CrossRefGoogle Scholar
  19. 19.
    Sun Z, Ma Y, Xu Y, Chen XL, Chen M, Yu J, Hu SC, Zhang ZB. Effect of the particle size of expandable graphite on the thermal stability, flammability, and mechanical properties of high-density polyethylene/ethylene vinyl-acetate/expandable graphite composite. Polym Eng Sci. 2014;54(5):1162–9.CrossRefGoogle Scholar
  20. 20.
    Wolska A, Goździkiewicz M, Ryszkowska J. Thermal and mechanical behaviour of flexible polyurethane foams modified with graphite and phosphorous fillers. J Mater Sci. 2012;47(15):5627–34.CrossRefGoogle Scholar
  21. 21.
    Burger N, Laachachi A, Mortazavi B, Ferriol M, Lutz M, Toniazzo V, Ruch D. Alignments and network of graphite fillers to improve thermal conductivity of epoxy-based composites. Int J Heat Mass Transf. 2015;89:505–13.CrossRefGoogle Scholar
  22. 22.
    Zhang L, Zhang M, Zhou Y, Hu LH. The study of mechanical behavior and flame retardancy of castor oil phosphate-based rigid polyurethane foam composites containing expanded graphite and triethyl phosphate. Polym Degrad Stab. 2013;98(12):2784–94.CrossRefGoogle Scholar
  23. 23.
    Jana P, Fierro V, Pizzi A, Celzard A. Thermal conductivity improvement of composite carbon foams based on tannin-based disordered carbon matrix and graphite fillers. Mater Des. 2015;83:635–43.Google Scholar
  24. 24.
    Zou L, Huang B, Huang Q, Zou Z, Tan M, Jiang J. Thermal conductivity for C/C composites. Chin J Nonferrous Met. 1997;7(4):132–5.Google Scholar
  25. 25.
    Focke WW, Muiambo H, Mhike W, Kruger HJ, Ofosu O. Flexible PVC flame retarded with expandable graphite. Polym Degrad Stab. 2014;100:63–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Coal Resources and Safe MiningChina University of Mining and TechnologyXuzhouPeople’s Republic of China
  2. 2.Key Laboratory of Gas and Fire Control for Coal MinesXuzhouPeople’s Republic of China
  3. 3.School of Safety EngineeringChina University of Mining and TechnologyXuzhouPeople’s Republic of China
  4. 4.College of Engineering and Computer ScienceAustralian National UniversityActonAustralia

Personalised recommendations