Journal of Thermal Analysis and Calorimetry

, Volume 126, Issue 2, pp 455–466 | Cite as

The exploration of the influence of microencapsulation processing parameters on the stabilization of ammonium azide particles

Resolved by Taguchi orthogonal array design method


The microencapsulation of ammonium azide particles (NH4N3) with fibrous nitrocellulose has been carried out through a solvent/non-solvent procedure which is based on the coacervation principle. X-ray diffraction, scanning electron microscope, Fourier transform infrared spectroscopy, thermogravimetry–differential thermal analysis and differential scanning calorimetry techniques were used to characterize the structure, morphology and thermal stability of treated ammonium azide particles. Taguchi L-9 orthogonal array design method was exploited for assessment of effectiveness of experimental parameters on the coating properties. The investigated parameters were percent of coating agent, addition time of non-solvent, volume of non-solvent and stirring speed of the mixture (revolutions per minute, rpm). The individual effect of each parameter on the thermal stability of NH4N3 particle, determined by thermal analysis methods, was quantitatively evaluated by the analysis of variance. The statistical results revealed that the most stabilized coated NH4N3 particles can be obtained by using 2 % (w/w) of nitrocellulose as coating agent and by adding of 70 mL n-hexane as non-solvent within 50 min under stirring at 90 rpm, where the sublimation temperature of treated sample increases about 60 °C with respect to uncoated one and reaches to 186.5 °C. Also, the kinetic parameters of the sublimation processes of pure and microencapsulated NH4N3 particles that stabilized at this condition were obtained from the differential scanning calorimetry data by non-isothermal methods proposed by ASTM E696. Finally, the results of this study illustrated that the efficiency of the proposed chemometric method is higher than that of sequential experimental technique.


Ammonium azide particles Sublimation Microencapsulation Stabilization Taguchi method Kinetic parameters 


  1. 1.
    Ng WL, Field JE. Sublimation of ammonium azide by differential scanning calorimetric and thermogravimetric. Thermochim Acta. 1985;84:133–40.CrossRefGoogle Scholar
  2. 2.
    Prince E, Choi CS. Ammonium azide. Acta Crystallogr B. 1978;34:2606–8.CrossRefGoogle Scholar
  3. 3.
    Ledgard JB. The preparatory manual of explosives, 2nd ed., ISBN: 0-9727863-O-9, Copyright @ 2003 by The Paranoid Publications Group; 2003.Google Scholar
  4. 4.
    Ledgard J, The preparatory manual of black powder and pyrotechnics, version 1.4, ISBN: 9780615174273, Jared Ledgard; 2007.Google Scholar
  5. 5.
    Meyer R, Kohler J, Homburg A. Explosives. 5th ed. Essen: Wiley-VCH; 2002.CrossRefGoogle Scholar
  6. 6.
    Amorim HS, Amaral JMR, Pattison P, Ludka IP, Mendes JC. Ammonium azide: a commented example of an Ab initio structure (Re-) determination from X-ray powder diffraction. Rev Soc Quím Méx. 2002;46:313–9.Google Scholar
  7. 7.
    Ball DW. High-level ab initio calculations on hydrogen–nitrogen compounds. thermochemistry of tetrazetidine, N4H4. J Mol Struct Theochem. 2002;619:37–43.CrossRefGoogle Scholar
  8. 8.
    Crowhurst JC, Zaug JM, Radousky HB, Steele BA, Landerville AC, Oleynik II. Ammonium azide under high pressure: a combined theoretical and experimental study. J Phys Chem A. 2014;118:8695–700.CrossRefGoogle Scholar
  9. 9.
    Landerville AC, Steele BA, Oleynik II. Ammonium azide under hydrostatic compression. J Phys Conf Ser. 2014;500:162006/1-6.CrossRefGoogle Scholar
  10. 10.
    Liu Q-J, Zeng W, Liu F-S, Liu Z-T. First-principles study of hydronitrogen compounds: molecular crystalline NH4N3 and N2H5N3. Comput Theor Chem. 2013;1014:37–42.CrossRefGoogle Scholar
  11. 11.
    Yedukondalu N, Ghule VD, Vaitheeswaran G. Computational study of structural, electronic and optical properties of crystalline NH4N3. J Phys Chem C. 2012;116:16910–7.CrossRefGoogle Scholar
  12. 12.
    Wu X, Cui H, Zhang J, Cong R, Zhu H, Cui Q. High pressure synchrotron X-ray diffraction and Raman scattering studies of ammonium azide. Appl Phys Lett. 2013;102:121902/1-4.Google Scholar
  13. 13.
    Dows DA, Whittle E, Pimentel GC. Infrared spectrum of solid ammonium azide: a vibrational assignment. J Chem Phys. 1955;23:1475–9.CrossRefGoogle Scholar
  14. 14.
    Boutin H, Trevino S, Prask HJ. Low-frequency molecular motions in ammonium azide. J Chem Phys. 1966;45:401–2.CrossRefGoogle Scholar
  15. 15.
    Medvedev SA, Eremets MI, Evers J, Klapoetke TM, Palasyuk T, Trojan IA. Pressure induced polymorphism in ammonium azide (NH4N3). Chem Phys. 2011;386:41–4.CrossRefGoogle Scholar
  16. 16.
    Wu X, Ma F, Ma C, Cui H, Liu Z, Zhu H, Wang X, Cui Q. Pressure-driven variations of hydrogen bonding energy in ammonium azide (NH4N3): IR absorption and Raman scattering studies. J Chem Phys. 2014;141:024703/1-8.Google Scholar
  17. 17.
    Medvedev SA, Palasyuk T, Trojan IA, Naumov PG, Evers J, Klapötke TM, Eremets MI. Pressure-tuned vibrational resonance coupling of intramolecular fundamentals in ammonium azide (NH4N3). Vib Spectrosc. 2012;58:188–92.CrossRefGoogle Scholar
  18. 18.
    Iqbal Z, Malhotra ML. Vibrational spectrum of crystalline ammonium azide. Spectrochim Acta Part A. 1971;27:441–6.CrossRefGoogle Scholar
  19. 19.
    Yakovleva GS, Kurbangalina RK, Stesik LN. Detonation properties of ammonium azide. Combust Explos Shock Waves. 1997;13:405–7.CrossRefGoogle Scholar
  20. 20.
    Farhat K, Batonneau Y, Florea O, Kappenstein C. Preparation and use of ammonium azide as a fuel additive to ionic oxidizer solutions, physicochemical properties, thermal and catalytic decomposition. In: 42nd AIAA/ASME/SAE/ASEE, joint propulsion conference, 9–12 July 2006. California: Sacramento; 2006.Google Scholar
  21. 21.
    Donald H, Jenkins B. Viscosity B-coefficient of ammonium azide and the enthalpy of formation of the azide anion. J Solution Chem. 1993;22:1029–31.CrossRefGoogle Scholar
  22. 22.
    Eslami A, Hosseini SG, Shariaty SHM. Stabilization of ammonium azide particles through its microencapsulation with some organic coating agents. Powder Technol. 2011;208:137–43.CrossRefGoogle Scholar
  23. 23.
    Finch CA. Microencapsulation, Ulmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH Verlag GmbH; 2002.Google Scholar
  24. 24.
    Aghbashlo M, Mobli H, Rafiee S, Madadlou A. Optimization of emulsification procedure for mutual maximizing the encapsulation and exergy efficiencies of fish oil microencapsulation. Powder Technol. 2012;225:107–17.CrossRefGoogle Scholar
  25. 25.
    Kha TC, Nguyen MH, Roach PD, Stathopoulos CE. Microencapsulation of Gac oil: optimisation of spray drying conditions using response surface methodology. Powder Technol. 2014;264:298–309.CrossRefGoogle Scholar
  26. 26.
    Kwon YS, Gromov AA, Strokova JI. Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin. Appl Surf Sci. 2007;253:5558–64.CrossRefGoogle Scholar
  27. 27.
    Gromov A, Ilyin A. Characterization of aluminum powders: II. Aluminum nanopowders passivated by non-inert coatings. Propellant Explos Pyrotech. 2006;31:401–8.CrossRefGoogle Scholar
  28. 28.
    Zhang L, Ranade MB, Gentry JW. Formation of organic coating on ultrafine silver particles using a gas-phase process. J Aerosol Sci. 2004;35:457–71.CrossRefGoogle Scholar
  29. 29.
    Herbig JA. Encyclopedia of chemical technology (Kirk-Othmer), vol. 13. New York: Interscience; 2003.Google Scholar
  30. 30.
    Chen X, Jiao C, Zhang J. Microencapsulation of ammonium polyphosphate with hydroxyl silicone oil and its flame retardance in thermoplastic polyurethane. J Therm Anal Calorim. 2011;104:1037–43.CrossRefGoogle Scholar
  31. 31.
    Wang N, Mi L, Wu Y, Zhang J, Fang Q. Double-layered co-microencapsulated ammonium polyphosphate and mesoporous MCM-41 in intumescent flame-retardant natural rubber composites. J Therm Anal Calorim. 2014;115:1173–81.CrossRefGoogle Scholar
  32. 32.
    Eslami A, Hosseini SG, Asadi V. The effect of microencapsulation with nitrocellulose on thermal properties of sodium azide particles. Prog Org Coat. 2009;65:269–74.CrossRefGoogle Scholar
  33. 33.
    Eslami A, Hosseini SG, Bazrgary M. Improvement of thermal decomposition properties of ammonium perchlorate particles using some polymer coating agents. J Therm Anal Calorim. 2013;113:721–30.CrossRefGoogle Scholar
  34. 34.
    Roy RK. A primer on the Taguchi method. New York: Van Nostrand Reinhold; 1990.Google Scholar
  35. 35.
    Taguchi G. Systems of experimental design. Kraus: New York, Vol. 1, 2; 1987.Google Scholar
  36. 36.
    Ross PJ. Taguchi techniques for quality engineering. New York: Mc Graw-Hill; 1988.Google Scholar
  37. 37.
    Mishra N, Patra N, Pandey S, Salerno M, Sharon M, Sharon M. Taguchi method optimization of wax production from pyrolysis of waste polypropylene. J Therm Anal Calorim. 2014;117:885–92.CrossRefGoogle Scholar
  38. 38.
    Lai Y, Huang H, Huang Q, Zhang H, Guo Z. Optimization of the experimental conditions for the synthesis of micro-size monodisperse spherical silver powders using Box–Behnken design. Powder Technol. 2014;263:7–13.CrossRefGoogle Scholar
  39. 39.
    Hosseini SG, Eslami A. Orthogonal array design method for optimization experiments of sodium azide microencapsulation with stearic acid. Prog Org Coat. 2010;68:313–8.CrossRefGoogle Scholar
  40. 40.
    Hosseini SG, Pourmortazavi SM, Fathollahi M. Orthogonal array design for the optimization of silver recovery from waste photographic paper. Sep Sci Technol. 2004;8:1953–65.Google Scholar
  41. 41.
    Chen G, Chen J, Li J, Guo S, Srinivasakannan C, Peng J. Optimization of combined microwave pretreatment–magnetic separation parameters of ilmenite using response surface methodology. Powder Technol. 2012;232:58–63.CrossRefGoogle Scholar
  42. 42.
    Dargahi M, Kazemian H, Soltanieh M, Hosseinpour M, Rohani S. High temperature synthesis of SAPO-34: applying an L9 Taguchi orthogonal design to investigate the effects of experimental parameters. Powder Technol. 2012;217:223–30.CrossRefGoogle Scholar
  43. 43.
    Hou T-H, Su C-H, Liu W-L. Parameters optimization of a nano-particle wet milling process using the Taguchi method, response surface method and genetic algorithm. Powder Technol. 2007;173:153–62.CrossRefGoogle Scholar
  44. 44.
    Hanley KJ, O’Sullivan C, Oliveira JC, Cronin K, Byrne EP. Application of Taguchi methods to DEM calibration of bonded agglomerates. Powder Technol. 2011;210:230–40.CrossRefGoogle Scholar
  45. 45.
    Heng D, Lee SH, Kwek JW, Ng WK, Chan H-K, Tan RBH. Assessing the combinatorial influence of climate, formulation and device on powder aerosolization using the Taguchi experimental design. Powder Technol. 2012;226:253–60.CrossRefGoogle Scholar
  46. 46.
    Edrissi M, Samadanian-Isfahani SA, Soleymani M. Preparation of cobalt molybdate nanoparticles; Taguchi optimization and photocatalytic oxidation of reactive black 8 dye. Powder Technol. 2013;249:378–85.CrossRefGoogle Scholar
  47. 47.
    Pourmortazavi SM, Hajimirsadeghi SS, Kohsari I, Hosseini SG. Orthogonal array design for the optimization of supercritical carbon dioxide extraction of different metals from a solid matrix with cyanex 301 as a ligand. J Chem Eng Data. 2004;49:1530–4.CrossRefGoogle Scholar
  48. 48.
    Frierson WJ. Inorganic syntheses, vol. 2. New York: McGraw-Hill Book Company, Inc; 1946.CrossRefGoogle Scholar
  49. 49.
    Tarasov NB, Petrov OE, Faizullin DA, Davydov MN. FTIR-spectroscopic studies of the fine structure of nitrocellulose treated by Desulfovibrio desulfuricans. Anaerobe. 2005;11:312–4.CrossRefGoogle Scholar
  50. 50.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  51. 51.
    Ozawa T. A new method of analyzing thermogravimetric data. B Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  52. 52.
    ASTM E698-05. Standard test method for Arrhenius kinetic constants for thermally unstable materials. 2001. doi: 10.1520/E0698-05.
  53. 53.
    Pourmortazavi SM, Hosseini SG, Rahimi-Nasrabadi M, Hajimirsadeghi SS, Momenian H. Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;162:1141–4.CrossRefGoogle Scholar
  54. 54.
    Hosseini SG, Eslami A. Investigation on the reaction of powdered tin as a metallic fuel with some pyrotechnic oxidizers. Propellant Explos Pyrotech. 2011;36:175–81.CrossRefGoogle Scholar
  55. 55.
    Eslami A, Hosseini SG, Improving safety performance of lactose-fueled binary pyrotechnic systems of smoke dyes. J Therm Anal Calorim. 104:671-678. 2011.
  56. 56.
    Eslami A, Hosseini SG, Pourmortazavi SM. Thermoanalytical investigation on some boron-fuelled binary pyrotechnic systems. Fuel. 2008;87:3339–43.CrossRefGoogle Scholar
  57. 57.
    Hosseini SG, Eslami A. Thermoanalytical investigation of relative reactivity of some nitrate oxidants in tin-fueled pyrotechnic systems. J Therm Anal Calorim. 2010;101:1111–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Department of Inorganic Chemistry, Faculty of ChemistryUniversity of MazandaranBabolsarIran
  2. 2.Department of ChemistryMalek Ashtar University of TechnologyTehranIran

Personalised recommendations