Journal of Thermal Analysis and Calorimetry

, Volume 126, Issue 2, pp 561–570 | Cite as

Experimental and modeling of thermal and dielectric properties of aluminum nitride-reinforced polybenzoxazine hybrids

  • Noureddine Ramdani
  • Mehdi Derradji
  • Jun Wang
  • El-oualid Mokhnache
  • Wen-bin Liu
  • Yu-guang Liu
  • Wei Dong


The effects of aluminum nitride (AlN) loading and size on the thermal conductivity of bisphenol A-aniline-based polybenzoxazine resin were studied. The experimental data of the thermal conductivity, CTE, and dielectric constants of these hybrids were compared with those predicted using various models. The morphological analysis revealed the formation of AlN conductive chains in the polybenzoxazine matrix. The thermal conductivity values of these hybrids gradually increased as the AlN fillers content increased and their sizes decreased. The highest thermal conductivity value reached 7.89 W m−1 K−1 at 60 vol% of 50 nm AlN. At the maximum AlN loading, the CTE values of these hybrids were reduced by 75 %, while their dielectric constants are raised by almost 45 %. The TG results showed significant improvements in the thermal degradation properties of these composites by adding the AlN filler; moreover, the Agari semiempirical model well-fitted the thermal conductivity experimental data of these materials.


Polybenzoxazine Aluminum nitride Thermal conductivity Dielectric constant CTE Modeling 



The authors greatly appreciated the financial supports from National Natural Science Foundation of China (Project No. 50973022), Specialized Research Funds for the Doctoral Program of Higher Education (Project No. 20122304110019), Natural Science Foundation of Heilongjiang Province (Project No. E200921), Fundamental Research Funds for the Central Universities (Project No. HEUCFT1009), Innovation Talents Foundation of Harbin (Project No. 2008RFXXG006), and the open fund of Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, Harbin Engineering University.


  1. 1.
    Kim W, Bae JW, Choi ID, Kim YS. Thermally conductive EMC for microelectronic encapsulation. Polym Eng Sci. 1999;39(4):756–66.CrossRefGoogle Scholar
  2. 2.
    Wong CP, Bollampally RS. Thermally conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J Appl Polym Sci. 1999;74(14):3396–403.CrossRefGoogle Scholar
  3. 3.
    Lu X, Xu G. Thermally conductive polymer composites for electronic packaging. J Appl Polym Sci. 1997;65(13):2733–8.CrossRefGoogle Scholar
  4. 4.
    Tanaka T, Kuzako M, Okamoto K. Toward high thermal conductivity nano micro epoxy composites with sufficient endurance voltage. J Int Counc Elect Eng. 2012;2(1):90–8.CrossRefGoogle Scholar
  5. 5.
    Kumlutas D, Tavman IH. A numerical and experimental study on thermal conductivity of particle filled polymer composites. J Thermoplastic Compos Mater. 2006;19(4):441–55.CrossRefGoogle Scholar
  6. 6.
    Xu Y, Chung DDL, Mroz C. Thermally conducting aluminium nitride polymer-matrix composites. Compos Part A. 2001;32(12):1749–57.CrossRefGoogle Scholar
  7. 7.
    Li L, Chung DDL. Thermally conducting polymer–matrix composites containing both AlN particles and SiC whiskers. J Electron Mater. 1994;23(6):557–64.CrossRefGoogle Scholar
  8. 8.
    Shtein M, Nadiv R, Buzaglo M, Kahil K, Regev O. Thermally conductive graphene-polymer composites: size, percolation, and synergy effects. Chem Mater. 2015;27(6):2100–6.CrossRefGoogle Scholar
  9. 9.
    Gonsalves KE, Chen X, Baraton MI. Mechanistic investigation of the preparation of polymer/ceramic nanocomposites. Nanostru Mater. 1997;9(1–8):181–4.CrossRefGoogle Scholar
  10. 10.
    Zhang SM, Deng H, Zhang Q, Fu Q. Formation of conductive networks with both segregated and double-percolated characteristic in conductive polymer composites with balanced properties. ACS Appl Mater Interfaces. 2014;6(9):6835–44.CrossRefGoogle Scholar
  11. 11.
    Agari Y, Uno T. Estimation on thermal conductivities of filled polymers. J Appl Polym Sci. 1986;32(7):5705–12.CrossRefGoogle Scholar
  12. 12.
    Progelhof RC, Throne JL, Ruetsch RR. Methods of predicting the thermal conductivity of composite systems. Polym Eng Sci. 1976;16(9):615–25.CrossRefGoogle Scholar
  13. 13.
    Cheng SC, Vachon RI. The prediction of the thermal conductivity of two and three phase solid heterogeneous mixtures. Int J Heat Mass Transfer. 1969;12(3):249–64.CrossRefGoogle Scholar
  14. 14.
    Yung KC, Zhu BL, Yue TM, Xie CS. Development of epoxy-matrix composite with both high-thermal conductivity and low-dielectric constant via hybrid filler systems. J Appl Polym Sci. 2010;116(1):518–27.CrossRefGoogle Scholar
  15. 15.
    Nagai Y, Lai GC. Thermal conductivity of epoxy resin filled with particulate aluminium nitride powder. J Ceram Soc Jpn. 1997;105(3):197–200.CrossRefGoogle Scholar
  16. 16.
    He X, Fu R, Han Y, Shen Y, Wang D. High thermal conductive Si3N4 particle filled epoxy composites with a novel structure. J Electron Packag. 2007;129(4):469–72.CrossRefGoogle Scholar
  17. 17.
    Yu S, Hing P, Hu X. Thermal conductivity of polystyrene–aluminium nitride composites. Compos Part A Appl Sci Manuf. 2002;33(2):289–92.CrossRefGoogle Scholar
  18. 18.
    He H, Fu R, Shen Y, Han Y, Song X. Preparation and properties of Si3N4/PS composites used for electronic packaging. Compos Sci Technol. 2007;67(11–12):2493–9.CrossRefGoogle Scholar
  19. 19.
    Wang J, Yi XS. Preparation and the properties of PMR-type polyimide composites with aluminium nitride. J Appl Polym Sci. 2003;89(14):3913–7.CrossRefGoogle Scholar
  20. 20.
    Chen X, Gonsalves KE, Chow GM, Xiao TD. Homogeneous dispersion of nano-structured aluminium nitride in a polyimide matrix. Adv Mater. 1994;6(6):481–4.CrossRefGoogle Scholar
  21. 21.
    Xie SH, Zhu BK, Li JB, Wei XZ, Xu ZK. Preparation and properties of polyimide/aluminium nitride. Polym Test. 2004;23(7):797–801.CrossRefGoogle Scholar
  22. 22.
    Zhang WB, Xu XL, Yang JH, Huang T, Zhang N, Wang Y, Zhou ZW. High thermal conductivity of poly(vinylidene fluoride)/carbon nanotubes nanocomposites achieved by adding polyvinylpyrrolidone. Compos Sci Technol. 2015;106:1–8.CrossRefGoogle Scholar
  23. 23.
    Ishida H, Rimdusit S. Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine. Thermochim Acta. 1998;320(1–2):177–86.CrossRefGoogle Scholar
  24. 24.
    Goyal R, Tiwari A, Mulik U, Negi Y. Novel high performance Al2O3/poly(ether ether ketone) nanocomposites for electronics applications. Compos Sci Technol. 2007;67(9):1802–12.CrossRefGoogle Scholar
  25. 25.
    Sim LC, Ramanan SR, Ismail H, Seetharamu KN, Goh TJ. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochim Acta. 2005;430(1–2):155–65.CrossRefGoogle Scholar
  26. 26.
    Zhou W, Wang C, Ai T, Wu K, Zhao F, Gu H. A novel fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity. Compos Part A Appl Sci Manuf. 2009;40(6–7):830–6.CrossRefGoogle Scholar
  27. 27.
    Maiti SN, Ghosh K. Thermal characteristics of silver powder—filled polypropylene composites. J Appl Polym Sci. 1994;52(8):1091–103.CrossRefGoogle Scholar
  28. 28.
    Yuan FY, Zhang HB, Li X, Li XZ, Yu ZZ. Synergistic effect of boron nitride flakes and tetrapod-shaped ZnO whiskers on the thermal conductivity of electrically insulating phenol formaldehyde composites. Compos Part A Appl Sci Manuf. 2013;53:137–44.CrossRefGoogle Scholar
  29. 29.
    Zhou Y, Wang Y, Wang L, Yu K, Lin ZD, He L. Fabrication and characterization of aluminium nitride polymer matrix composites with high thermal conductivity and low dielectric constant for electronic application. Mater Sci Eng B. 2012;177(11):892–6.CrossRefGoogle Scholar
  30. 30.
    Zhou W, Yu D, Min C, Fu Y, Guo X. Thermal, dielectric, and mechanical properties of SiC particles filled linear low-density polyethylene composites. J Appl Polym Sci. 2009;112(3):1695–703.CrossRefGoogle Scholar
  31. 31.
    Yen CL, Tseng HC, Wang YZ, Hsieh KH. Thermal conductivity of glass fiber reinforced polypropylene under high pressure. J Appl Polym Sci. 1991;42(5):1179–84.CrossRefGoogle Scholar
  32. 32.
    Bajaj P, Jha NK, Kumar A. Effect of coupling agents on thermal and electrical properties of mica/epoxy composites. J Appl Polym Sci. 1995;56(10):1339–47.CrossRefGoogle Scholar
  33. 33.
    Ishida H, Agag T. Handbook of benzoxazine resin. Oxford: Elsevier Press; 2012.Google Scholar
  34. 34.
    Kiskan B, Ghosh NN, Yagci Y. Polybenzoxazine-based composites as high performance materials. Polym Int. 2011;60(2):167–77.CrossRefGoogle Scholar
  35. 35.
    Rimdusit S, Jubsilp C, Tiptipakorn S. Alloys and composites of polybenzoxazines. Singapore: Springer; 2013.CrossRefGoogle Scholar
  36. 36.
    Ramdani N, Liu WB, Wang J, Derradji M. Ceramic based polybenzoxazine micro- and nanocomposites. In: Ishida H, Froimowicz P, editors. Advanced and emerging polybenzoxazine science and technology. 1st ed. Amsterdam: Elsevier; 2017.Google Scholar
  37. 37.
    Ramdani N, Derradji M, Wang J, Feng TT, Tong Z, Mokhnache EO, Liu WB. Preparation and characterization of thermally-conductive silane-treated silicon nitride filled polybenzoxazine nanocomposites. Mater Lett. 2015;155:34–7.CrossRefGoogle Scholar
  38. 38.
    Ohashi M, Kawakami S, Yokogawa Y, Lai GC. Spherical aluminium nitride fillers for heat-conducting plastic packages. J Am Ceram Soc. 2005;88(9):2615–8.CrossRefGoogle Scholar
  39. 39.
    Agrawal A, Satapathy A. Epoxy composites filled with micro-sized AlN particles for microelectronic applications. Part Sci Technol Int J. 2015;33:2–7.CrossRefGoogle Scholar
  40. 40.
    Kananu SK. Dielectric properties of matrix composite materials with high volume concentrations of inclusions (effective field approach). Int J Eng Sci. 2003;41(12):1287–312.CrossRefGoogle Scholar
  41. 41.
    Ling W, Gu A, Liang G, Yuan L. New composites with thermal conductivity and low dielectric constant for microelectronic packaging. Polym Compos. 2010;31(2):307–13.Google Scholar
  42. 42.
    Vo HT, Todd M, Shi FG, Shapiro AA, Edwards M. Towards model based engineering of underfill materials: CTE modeling. Microelect J. 2001;32(4):331–8.CrossRefGoogle Scholar
  43. 43.
    Ning X, Ishida H. Phenolic materials via ring-opening polymerization: synthesis and characterization of bisphenol-A based benzoxazines and their polymers. J Polym Sci Part A Polym Chem. 1994;32(6):1121–9.CrossRefGoogle Scholar
  44. 44.
    Lee ES, Lee SM. Enhanced thermal conductivity of polymer matrix composite via high solids loading of aluminium nitride in epoxy resin. J Am Ceram Soc. 2008;91(4):1169–74.CrossRefGoogle Scholar
  45. 45.
    Zhou WY, Qi SH, Li HD, Shao SY. Study on insulating thermal conductive BN/HDPE composites. Thermochim Acta. 2007;452(1):36–42.CrossRefGoogle Scholar
  46. 46.
    Yu S, Peter H, Xio H. Thermal expansion behavior of PS-AlN composites. J Phys D Appl Phys. 2000;33(13):1606–10.CrossRefGoogle Scholar
  47. 47.
    Xu Y, Chung DDL, Mroz C. Thermally conducting AlN polymer matrix composites. Compos Part A. 2001;32(12):1749–57.CrossRefGoogle Scholar
  48. 48.
    Wong CP, Raja SB. Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled ceramic particles for electronic packaging. J Appl Polym Sci. 1999;74(14):3396–403.CrossRefGoogle Scholar
  49. 49.
    Yu D, Wu J, Zhou L, Xie D, Wu S. The dielectric and mechanical properties of a potassium-titanate-whisker-reinforced PP/PA blend. Compos Sci Technol. 2000;60(4):499–508.CrossRefGoogle Scholar
  50. 50.
    Wu SL, Tung IC. Dielectric studies of mineral-filled epoxy. Polym Compos. 1995;16(3):233–9.CrossRefGoogle Scholar
  51. 51.
    Su YC, Chang FC. Synthesis and characterization of fluorinated polybenzoxazine material with low dielectric constant. Polymer. 2003;44(26):7989–96.CrossRefGoogle Scholar
  52. 52.
    Velez-Herrera P, Ishida H. Synthesis and characterization of highly fluorinated diamines and benzoxazines derived therefrom. J Fluorine Chem. 2009;130(6):573–80.CrossRefGoogle Scholar
  53. 53.
    Su YC, Chen WC, Ou KL, Chang FC. Study of the morphologies and dielectric constants of nanoporous materials derived from benzoxazine-terminated poly(ε-caprolactone)/polybenzoxazine co-polymers. Polymer. 2005;46(11):3758–66.CrossRefGoogle Scholar
  54. 54.
    Ramdani N, Derradji M, Wang J, Liu W, Mokhnache EO. Effects of aluminium nitride silane-treatment on the mechanical and thermal properties of polybenzoxazine matrix. Plast Rubber Compos. 2016;45(2):72–80.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Noureddine Ramdani
    • 1
    • 2
  • Mehdi Derradji
    • 1
    • 2
  • Jun Wang
    • 1
    • 2
  • El-oualid Mokhnache
    • 2
    • 3
  • Wen-bin Liu
    • 1
    • 2
  • Yu-guang Liu
    • 2
    • 3
  • Wei Dong
    • 2
    • 3
  1. 1.Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, Polymer Materials Research Center, College of Materials Science and Chemical EngineeringHarbin Engineering UniversityHarbinChina
  2. 2.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina
  3. 3.Technical Physics Institute of Heilongjiang Academy of ScienceHarbinChina

Personalised recommendations