Journal of Thermal Analysis and Calorimetry

, Volume 125, Issue 3, pp 1233–1240 | Cite as

Green-coloured pigments with perovskite structure

Thermal, structural and optical properties
  • Žaneta Dohnalová
  • Petr Bělina
  • Nataliia Gorodylova
  • Petra Šulcová


Samples were synthesised by solid-state reaction at high temperatures and characterised by X-ray diffraction analysis, colouristic analysis and particle size analysis. Possible MoO3 evaporation at high temperatures was studied by method of thermal analysis. The most interesting sample is SrO–0.65SnO2–0.05MoO3–0.075Tb4O7 which was prepared by calcination at 1500 °C. This powder is single phase, with cubic structure. Colour of the sample is dark green (L* = 46.37, b* = −9.630 and b* = 10.60).


Green pigment Perovskite Thermal analysis Solid-state reaction Colour parameters 


  1. 1.
    Buxbaum G, Pfaf G. Industrial inorganic pigments. Weinheim: Wiley-VCH; 2005.CrossRefGoogle Scholar
  2. 2.
    Martos M, Martínez M, Cordoncillo E, Escribano P. Towards more ecological ceramic pigments: study of the influence of glass composition on the colour stability of pink chromium-doped ceramic pigment. J Eur Ceram Soc. 2007;27:4561–7.CrossRefGoogle Scholar
  3. 3.
    Hedayati HR, Sabbagh Alvani AA, Sameie H, Salimi R, Moosakhani S, Tabatabaee F, Amiri Zarandi A. Dyes Pigments. 2015;113:588–95.CrossRefGoogle Scholar
  4. 4.
    Mesíková Ž, Trojan M, Šulcová P. Conditions of synthesis of Co–Zn–Ti–Cr spinel pigment. Ceramics-Silikáty. 2005;49:48–52.Google Scholar
  5. 5.
    Mesíková Ž, Šulcová P, Trojan M. Preparation and practical application of spinel pigment Co0.46Zn0.55(Ti0.046Cr0.091)2O4. J Therm Anal Calorim. 2006;84:733–6.CrossRefGoogle Scholar
  6. 6.
    Milão TM, Oliveira JFA, Araújo VD, Bernardi MIB. Zn0.97Co0.03O (M=Co, Fe, and V) pigments: thermal, structural and optical characterization. J Therm Anal Calorim. 2011;103:873–7.CrossRefGoogle Scholar
  7. 7.
    Sangetha S, Basha R, Sreeram KJ, Sangilimuthu SN, Nair BU. Functional pigments from chromium (III) oxide nanoparticles. Dyes Pigments. 2012;94:548–52.CrossRefGoogle Scholar
  8. 8.
    Thongkanluang T, Limsuwan P, Rakkwamsuk P. Preparation and application of near-infrared reflective green pigment for ceramic tile roofs. Int J Appl Ceram Technol. 2011;8:1451–8.CrossRefGoogle Scholar
  9. 9.
    Li P, Xu HB, Zhang Y, Li ZH, Zheng SL, Bai YL. The effect of Al and Ba on the colour performance of chromic oxide green pigment. Dyes Pigments. 2009;80:287–91.CrossRefGoogle Scholar
  10. 10.
    Muñoz R, Masó N, Julián B, Márquez F, Beltrán H, Escribano P, Cordoncillo E. Environmental study of Cr2O3–Al2o3 green ceramic pigment synthesis. J Eur Ceram Soc. 2004;24:2087–94.CrossRefGoogle Scholar
  11. 11.
    Sumaletha N, Rajesh K, Mukundan P, Warrier KGK. Environmentally benign sol–gel derived nanocrystalline rod shaped calcium doped cerium phosphate yellow–green pigment. J Sol-Gel Sci Technol. 2009;52:242–50.CrossRefGoogle Scholar
  12. 12.
    Sivakumar V, Varadaraju UV. Environmentally benign novel green pigments: Pr1−xCaxPO4 (x = 0–1.4). Bull Mater Sci. 2005;28:299–301.CrossRefGoogle Scholar
  13. 13.
    Laha S, Sharma R, Bhat SV, Redyy MLP, Gopalakrishnan J, Natarajan S. Ba3(P1−xMnxO4)2: blue/green inorganic materials based on tetrahedral Mn(V). Bull Mater Sci. 2011;34:1257–62.CrossRefGoogle Scholar
  14. 14.
    Jiang P, Li J, Ozarowski A, Sleight AW, Subramanian MA. Intense turquoise and green colours based in brownmillerite-type oxides based on Mn5+ in Ba2In2−xMnxO5+x. Inorg Chem. 2013;52:1349–57.CrossRefGoogle Scholar
  15. 15.
    Jose S, Prakash A, Laha S, Natarajan S, Reddy ML. Green coloured nano-pigments derived from Y2BaCuO5: NIR reflective coatings. Dyes Pigments. 2014;107:118–26.CrossRefGoogle Scholar
  16. 16.
    Mizoguchi H, Eng HV, Woodward PM. Probing the electronic structures of ternary perovskite and pyrochlore oxides containing Sn4+ or Sb5+. Inorg Chem. 2004;43:1667–80.CrossRefGoogle Scholar
  17. 17.
    Prodjosantoso AK, Zhou Q, Kennedy BJ. Synchrotron X-ray diffraction study of the Ba1−xSrSnO3 solid solution. J Solid State Chem. 2013;200:241–5.CrossRefGoogle Scholar
  18. 18.
    Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976;32A:751–67.CrossRefGoogle Scholar
  19. 19.
    Joint Committee on Powder Diffraction Standards. International Centre of Diffraction Data. Swarthmore: JCPDS; 1983.Google Scholar
  20. 20.
    Commission Internationale de l′Eclairage, Recommendations on uniform colour spaces, colour difference equations, psychometric colopur terms. Supplement no. 2 of CIE publication no. 15 (E1-1,31) 1971, Paris Bureau Central de la CIE, 1978.Google Scholar
  21. 21.
    Adolfová L, Dohnalová Ž, Šulcová P. New inorganic pigments based on SrSnO3 doped by V2O5. J Therm Anal Calorim. 2013;113:161–7.CrossRefGoogle Scholar
  22. 22.
    Berbenni V, Milanese CH, Bruni G, Girella A, Marini A. Mechanothermal synthesis of SrSnO3. Z Naturforsch. 2014;3:313–20.Google Scholar
  23. 23.
    Chen YCh, Chang YH, Tsai BS. Influence of processing conditions on synthesis and photoluminescence of Eu3+-activated strontium stannate phosphors. J Alloys Compd. 2005;398:256–60.CrossRefGoogle Scholar
  24. 24.
    Vasala S, Yamauchi H, Karppinen M. Role of SrMoO4 in Sr2MgMoO6 synthesis. J Solid State Chem. 2011;184:1312–7.CrossRefGoogle Scholar
  25. 25.
    Dohnalová Ž, Gorodylová N, Šulcová P, Vlček M. Synthesis and characterization of terbium-doped SrSnO3 pigments. Ceram Int. 2014;40:12637–45.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Žaneta Dohnalová
    • 1
  • Petr Bělina
    • 1
  • Nataliia Gorodylova
    • 1
  • Petra Šulcová
    • 1
  1. 1.Department of Inorganic Technology, Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic

Personalised recommendations