Journal of Thermal Analysis and Calorimetry

, Volume 127, Issue 1, pp 851–856 | Cite as

Effects of amino acids on solid-state phase transition of ammonium nitrate

  • Kento Shiota
  • Hiroki Matsunaga
  • Atsumi Miyake


The purpose of this study was to obtain a better understanding of the effects of amino acids on the solid-state phase transitions of ammonium nitrate (AN). To this end, AN was combined with various amino acids in equimolar ratios and the phase transitions of the resulting mixtures were studied using differential scanning calorimetry (DSC) and in situ Raman spectroscopy. Compositional analysis was also conducted using X-ray powder diffraction (XRD), and the predicted stabilities of various molecular structures were assessed via quantum calculations. DSC and Raman results indicated that l-glycine and l-alanine inhibited the solid-state phase transitions of AN. Both XRD and calculation results suggested that AN reacts with these amino acids to form nitrate salts and that clusters are also generated by interactions between these compounds.


Ammonium nitrate Amino acids Solid-state phase transition Thermal analysis DSC–Raman in situ analysis 


  1. 1.
    Hatano H, Onda T, Shiino K. Properties of HNF (hydrazinium nitroformate). Sci Technol Energ Mater. 1995;56:143–7.Google Scholar
  2. 2.
    Bottaro JC, Penwell PE, Schmitt RJ. 1,1,3,3-Tetraoxo-1,2,3-triazapropene anion, a new oxy anion of nitrogen: the dinitramide anion and its salts. J Am Chem Soc. 1997;119:9405–10.CrossRefGoogle Scholar
  3. 3.
    Pak Z. Some ways to higher environmental safety of solid rocket propellant application. In: Proceedings of the AIAA/SAE/ASME/ASEE 29th joint propulsion conf and exhibition. Monterey; 1993.Google Scholar
  4. 4.
    Östmark H, Bemm U, Langlet A, Sanden R, Wingborg N. The properties of ammonium dinitramide (ADN): part 1, basic properties and spectroscopic data. J Energy Mater. 2000;18:123–8.CrossRefGoogle Scholar
  5. 5.
    Oxley JC, Smith JL, Zheng W, Rogers E, Coburn MD. Thermal decomposition studies on ammonium dinitramide (ADN) and 15N and 2H isotopomers. J Phys Chem A. 1997;101:5642–52.Google Scholar
  6. 6.
    Sinditskii VP, Egorshev Y, Levshenkov, Serushkin VV. Combustion of ammonium dinitramide, part1: burning behavior. J Propul Power. 2006;22:769–76.CrossRefGoogle Scholar
  7. 7.
    Matsunaga H, Yoshino S, Kumasaki M, Habu H, Miyake A. Aging characteristics of the energetic oxidizer ammonium dinitramide. Sci Technol Energ Mater. 2011;72:131–5.Google Scholar
  8. 8.
    Matsunaga H, Habu H, Miyake A. Influences of aging on thermal decomposition mechanism of high performance oxidizer ammonium dinitramide. J Therm Anal Calorim. 2013;113:1387–94.CrossRefGoogle Scholar
  9. 9.
    Matsunaga H, Habu H, Miyake A. Thermal behavior of new oxidizer ammonium dinitramide. J Therm Anal Calorim. 2013;111:1183–8.CrossRefGoogle Scholar
  10. 10.
    Matsunaga H, Habu H, Miyake A. Thermal decomposition of the high-performance oxidizer ammonium dinitramide under pressure. J Therm Anal Calorim. 2014;116:1227–32.CrossRefGoogle Scholar
  11. 11.
    Sugie Y, Miyake A, Effects of temperature on nitration of sulfamates. J Therm Anal Calorim. 2014;1213-7.Google Scholar
  12. 12.
    Sugie Y, Miyake A. Effects of nitration agent and water on thermal behavior during the nitration of sulfamates. Sci Technol Energ Mater. 2015;76:57–61.Google Scholar
  13. 13.
    Sinditskii VP, Egorshev VY, Levshenkov AI, Serushkin VV. Ammonium nitrate: combustion mechanism and the role of additives. Propellants Explos Pyrotech. 2005;30:269–80.CrossRefGoogle Scholar
  14. 14.
    Oommen C, Jain SR. Ammonium nitrate: a promising rocket propellant oxidizer. J Hazard Matter. 1999;67:253–81.CrossRefGoogle Scholar
  15. 15.
    Oxley JC, Smith JL, Rogers E, Yu M. Ammonium nitrate: thermal stability and explosivity modifiers. Thermochim Acta. 2002;384:23–45.CrossRefGoogle Scholar
  16. 16.
    Wada Y, Arai M. A study on ammonium nitrate-metal nitrate double salts as oxidizers for gas generating agent. Sci Technol Energ Mater. 2010;71:39–43.Google Scholar
  17. 17.
    Miyata Y, Hasue K. Burning characteristics of aminoguanidinium 5,5′-azobis-1H tetrazolate/ammonium nitrate mixture-effects of particle size and composition ratio on burning rate. J Energy Mater. 2011;29:344–59.CrossRefGoogle Scholar
  18. 18.
    Kohga M, Okamoto K. Thermal decomposition behaviors and burning characteristics of ammonium nitrate/polytetrahydrofuran/glycerin composite propellant. Combust Flame. 2011;158(578–82):15.Google Scholar
  19. 19.
    Nakamura H, Saeki K, Akiyoshi M, Takahasi K. The reaction of ammonium nitrate with carbon powder. Kayaku Gakkaishi. 2002;63:87–93 (In Japanese).Google Scholar
  20. 20.
    Pandey M, Jha S, Kumar R, Mishra S, Jha RR. The pressure effect study on the burning rate of ammonium nitrate-HTPB-based propellant with the influence catalysts. J Therm Anal Calorim. 2012;107:135–40.CrossRefGoogle Scholar
  21. 21.
    Vorozhtsov A, Archipov V, Bondarchuk S, Popok N, Klyakin G, Babuk V, Luca LTD, Galfetti L. Ballistic Characteristics of Solid Propellants Containing Dual Oxidizer. In: Proceedings of the 1st European Conference on Aerospace Science. Moscow; 2005.Google Scholar
  22. 22.
    Kajiyama K, Izato Y, Miyake A. Thermal characteristics of ammonium nitrate, carbon, and copper (II) oxide mixtures. J Therm Anal Calorim. 2013;113:1475–85.CrossRefGoogle Scholar
  23. 23.
    Izato Y, Miyake A, Date S. Combustion characteristics of ammonium nitrate and carbon mixtures based on a thermal decomposition mechanism. Propellants Explos Pyrotech. 2013;38:129–35.CrossRefGoogle Scholar
  24. 24.
    Izato Y, Kajiyama K, Miyake A. Thermal decomposition mechanism of ammonium nitrate and copper(II) oxide mixtures. Sci Technol Energ Matter. 2014;75:128–33.Google Scholar
  25. 25.
    Izato Y, Miyake A. A condensed phase decomposition mechanism for ammonium nitrate. Sci Technol Energ Mater. 2015;76:99–103.Google Scholar
  26. 26.
    Izato Y, Miyake A. Thermal decomposition of molten ammonium nitrate (AN). J Therm Anal Calorim. 2015;112:595–600.CrossRefGoogle Scholar
  27. 27.
    Fujisato K, Habu H, Miyake A, Hori K. Thermal decomposition of ammonium nitrate modeling of thermal dissociation in thermal analysis. Sci Technol Energ Mater. 2014;75:28–36.Google Scholar
  28. 28.
    Nagayama S, Katoh K, Higashi E, Nakano K, Kumagae K, Habu H, Wada Y, Arai M. Differential scanning calorimetry analysis of crystal structure transformation in spray-dried particles consisting of ammonium nitrate, potassium nitrate, and a polymer. J Therm Anal Calorim. 2014;118:1215–9.CrossRefGoogle Scholar
  29. 29.
    Nagayama S, Katoh K, Higashi E, Nakano K, Habu H. Effect of polymer addition amount and type on thermal decomposition behavior of spray-dried particles comprising ammonium nitrate, potassium nitrate, and polymer. J Therm Anal Calorim. 2014;118:1221–7.CrossRefGoogle Scholar
  30. 30.
    Lang AJ, Vyazovkin S. Phase and thermal stabilization of ammonium nitrate in form of PVP–AN glass. Mater Lett. 2008;62:1757–60.CrossRefGoogle Scholar
  31. 31.
    Lang AJ, Vyazovkin S. Ammonium nitrate-polymer glasses: a new concept for phase and thermal stabilization of ammonium nitrate. J Phys Chem B. 2008;112:11236–43.CrossRefGoogle Scholar
  32. 32.
    Golovina N, Nechiporenko G. Ammonium nitrate phase state stabilization with small amounts of some organic compounds. Cent Eur J Energ Mater. 2009;6:45–56.Google Scholar
  33. 33.
    Golovina N, Nechiporenko G. Phase state stabilization of ammonium nitrate for creating an oxidizing agent for smokeless gas-generating formulations yielding no toxic combustion products. Russ J Appl Chem. 2007;80:24–30.CrossRefGoogle Scholar
  34. 34.
    Sudhakar AOR, Mathew S. Thermal behavior of CuO doped phase-stabilised ammonium nitrate. Thermochim Acta. 2006;451:5–9.CrossRefGoogle Scholar
  35. 35.
    Klyakin GF, Taranushich VA. Phase stabilization of ammonium nitrate with binary additives consisting of potassium nitrate and complexone salts. Russ J Appl Chem. 2008;81:714–7.CrossRefGoogle Scholar
  36. 36.
    Deimling A, Engel W, Eisenreich N. Phase transitions of ammonium nitrate doped with alkali nitrates studied with fast X-ray diffraction. J Therm Anal. 1992;38:843–53.CrossRefGoogle Scholar
  37. 37.
    Wada Y, Hori K, Arai M. Combustion mechanism of mixtures of guanidine nitrate, ammonium nitrate, and basic copper nitrate. Sci Technol Energ Mater. 2010;71:83–7.Google Scholar
  38. 38.
    Wu HB, Chan CK. Effects of potassium nitrate on the solid phase transitions of ammonium nitrate particles. Atmos Environ. 2008;42:313–22.CrossRefGoogle Scholar
  39. 39.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O¨, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT.Google Scholar
  40. 40.
    Baran JA, Drozd MA, Ratajczak H. Polarised IR and Raman spectra of monoglycine nitrate single crystal. J Mol Struct. 2010;976:226–42.CrossRefGoogle Scholar
  41. 41.
    Gheorghe D, Nĕacsu A, Contineanu I, Teodorescu F, Tănăsescu S. Thermochemical properties of l-alanine nitrate and l-alanine ethyl ester nitrate. J Therm Anal Calorim. 2014;118:731–7.CrossRefGoogle Scholar
  42. 42.
    Nĕmec I, Císařová I, Mička Z. The crystal structure, vibrational spectra and DSC measurement of mono-l-alanium nitrate. J Mol Struct. 1999;476:243–53.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Kento Shiota
    • 1
  • Hiroki Matsunaga
    • 1
  • Atsumi Miyake
    • 1
    • 2
  1. 1.Graduate School of Environment and Information SciencesYokohama National UniversityYokohamaJapan
  2. 2.Institute of Advanced SciencesYokohama National UniversityYokohamaJapan

Personalised recommendations