Journal of Thermal Analysis and Calorimetry

, Volume 127, Issue 2, pp 1431–1443 | Cite as

Conformation-dependent affinity of Cu(II) ions peptide complexes derived from the human Pin1 protein

ITC and DSC study
  • Dorota Uber
  • Dariusz Wyrzykowski
  • Caterina Tiberi
  • Giuseppina Sabatino
  • Wioletta Żmudzińska
  • Lech Chmurzyński
  • Anna Maria Papini
  • Joanna Makowska


The human Pin1 WW domain catalyzes the cistrans isomerization of the proline peptide bond. In this study, the conformation and binding of Cu(II) ions by Pin1 were investigated. It has been found that the affinity of peptide fragments of the human Pin1 WW domain for Cu(II) ions depends on its conformation. In particular, we analyzed three peptides derived from human Pin1: the nonapeptide hPin1(14–22) (with sequence Arg-Met-Ser-Arg-Ser-Ser-Gly-Arg-Val-NH2, peptide 1) the undecapeptide hPin1(13–23) (with sequence Lys-Arg-Met-Ser-Arg-Ser-Ser-Gly-Arg-Val-Tyr-NH2, peptide 2) and its derivative Ala13Ala23hPin1(13–23) (with sequence Ala-Arg-Met-Ser-Arg-Ser-Ser-Gly-Arg-Val-Ala-NH2, peptide 3) to study the role of presence in the sequence of the flanked residues at the N- and C-terminus, i.e., Lys13 and Tyr23. The presence of heat-capacity peaks found by DSC measurements for the systems studied strongly suggests that the conformational equilibria of the peptides studied strongly depend on the temperature. NMR spectroscopy and molecular dynamics simulations were instrumental to verify the conformational preferences of three peptides. The absence of likely or oppositely charged groups at the ends of a short chain fragment destroys chain reversal because the charged groups probably screen the nonpolar core from the solvent. ITC experiment was used to study the interactions with Cu(II) ions. It was found that the most stable complexes with Cu2+ ions are formed with peptide 2, which has the most bent conformation.


Peptide conformation β-Hairpin hPin1 peptides NMR 



Human cell regulatory protein


Solid-phase peptide synthesis


Differential scanning calorimetry


Heat of capacity


Melting temperature


Isothermal titration calorimetry


2-(N-morpholino)ethanesulfonic acid


Nuclear magnetic resonance


Two-dimensional nuclear magnetic resonance spectroscopy


Rotating frame nuclear Overhauser effect spectroscopy


Double-quantum filtered correlation spectroscopy


Circular dichroism


Molecular dynamic simulation


Root-mean-square deviation



Calculations were carried out using the resources of the Informatics Center of the Metropolitan Academic Network (IC MAN) in Gdansk. Fondazione Ente Cassa di Risparmio di Firenze is greatly acknowledged for supporting Pept Lab of the University of Florence. Moreover, the Erasmus Program 2014 is acknowledged for the traineeship fellowship of DU in Pept Lab at the University of Florence.

Supplementary material

10973_2016_5387_MOESM1_ESM.docx (861 kb)
Supplementary material 1 (DOCX 860 kb)


  1. 1.
    Blanco FJ, Rivas G, Serrano L. A short linear peptide that folds into a native stable beta-hairpin in aqueous solution. Nat Struct Biol. 1994;1:584–90.CrossRefGoogle Scholar
  2. 2.
    Searle MS, Williams DH, Packman LC. A short linear peptide derived from the N-terminal sequence of ubiquitin folds into a water-stable non-native beta-hairpin. Nat Struct Biol. 1995;2:999–1006.CrossRefGoogle Scholar
  3. 3.
    Skwierawska A, Makowska J, Ołdziej S, Liwo A, Scheraga HA. Mechanism of formation of the C-terminal β-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus. I. Importance of hydrophobic interactions in stabilization of beta-hairpin structure. Proteins Struct Funct Bioinform. 2009;75(4):931–53.CrossRefGoogle Scholar
  4. 4.
    Lu KP, Hanes SD, Hunter T. A human peptidyl–prolyl isomerase essential for regulation of mitosis. Nature. 1996;380:544–7.CrossRefGoogle Scholar
  5. 5.
    Lu KP, Liou YC, Zhou XZ. Pinning down the proline-directed phosphorylation signaling. Trends Cell Biol. 2002;12:164–72.CrossRefGoogle Scholar
  6. 6.
    Lu KP. Prolyl isomerase Pin1 as a molecular target for cancer diagnostics and therapeutics. Cancer Cell. 2003;4:175–80.CrossRefGoogle Scholar
  7. 7.
    Lu KP, Liou YC, Vincent I. Proline-directed phosphorylation and isomerization in mitotic regulation and in Alzheimer’s disease. BioEssays. 2003;25:174–81.CrossRefGoogle Scholar
  8. 8.
    Liou IC, Sun A, Ryo A, Zhou XZ, Yu ZX, Huang HK, Uchida T, Bronson R, Bing G, Li X, Hunter T, Lu KP. Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature. 2003;424:556–61.CrossRefGoogle Scholar
  9. 9.
    Lu KP. Pinning down cell signaling, cancer and Alzheimer’s disease. Trends Biochem Sci. 2004;29:200–9.CrossRefGoogle Scholar
  10. 10.
    Scheinberg H. Wilson’s disease and the physiological chemistry of copper. Inorganic chemistry in biology and medicine. ACS Symp Ser. 1980;140:373–80.CrossRefGoogle Scholar
  11. 11.
    Crisponi G, Nurchi VM, Fanni D, Gerosa C, Nemolato S, Faa G. Copper-related diseases: from chemistry to molecular pathology. Coord Chem Rev. 2010;254:876–89.CrossRefGoogle Scholar
  12. 12.
    Laurie SH, Lund T, Raynor JB. Electronic absorption and electron spin resonance studies on the interaction between the biologically relevant copper(II) glycylglycine and l-histidine complexes with D-penicillamine. J Chem Soc, Dalton Trans. 1975;14:1389–94.CrossRefGoogle Scholar
  13. 13.
    Belosi B, Gaggelli E, Guerrini R, Kozłowski H, Łuczkowski M, Mancini FM, Remelli M, Valensin D, Valensin G. Copper binding to the neurotoxic peptide PrP106-126 thermodynamic and structural studies. Chem Bio Chem. 2004;5:349–59.CrossRefGoogle Scholar
  14. 14.
    Remelli M, Donatoni M, Guerrini R, Janicka A, Pretegiani P, Kozłowski H. Copper-ion interaction with the 106–113 domain of the prion protein: a solution-equilibria study on model peptides. Dalton Trans. 2005;17:2876–85.CrossRefGoogle Scholar
  15. 15.
    Kozłowski H, Janicka-Kłos A, Stańczak P, Valensin D, Valensin G, Kulon K. Specificity in the Cu2+ interactions with prion protein fragments and related His-rich peptides from mammals to fishes. Coord Chem Rev. 2008;252:1069–78.CrossRefGoogle Scholar
  16. 16.
    Gumienna-Kontecka E, Nurchi VM, Szebesczyk A, Bilska P, Krzywoszyńska K, Kozłowski H. Chelating agents as tools for the treatment of metal overload. Z Anorg Allg Chem. 2013;639:1321–31.CrossRefGoogle Scholar
  17. 17.
    Atwood CS, Moir RD, Huang X, Scarpa RC, Bacarra NME, Romano DM, Hartshorn MA, Tanzi RE. Bush AI dramatic aggregation of Alzheimer Aβ by Cu(II) is induced by conditions representing physiological acidosis. J Biol Chem. 1998;273:12817–26.CrossRefGoogle Scholar
  18. 18.
    Choi J-S, Braymer JJ, Nanga RPR, Ramamoorthy A, Lim MH. Design of small molecules that target metal-Aβ species and regulate metal-induced Aβ aggregation and neurotoxicity. Proc Natl Acad Sci. 2010;107:21990–5.CrossRefGoogle Scholar
  19. 19.
    Makowska J, Bagińska K, Liwo A, Chmurzyński L, Scheraga HA. Acidic–basic properties of three alanine-based peptides containing acidic and basic side chains: comparison between theory and experiment. Biopolym Pept Sci. 2008;90:724–32.CrossRefGoogle Scholar
  20. 20.
    Makowska J, Bagińska K, Skwierawska A, Liwo A, Chmurzyński L, Scheraga HA. Influence of charge and size of terminal amino-acid residues on local conformational states and shape of alanine-based peptides. Biopolym Pept Sci. 2008;90:772–82.CrossRefGoogle Scholar
  21. 21.
    Plotnikov V, Rochalski A, Brandts M, Brandts JF, Williston S, Frasca V, Lin LN. An autosampling differential scanning calorimeter instrument for studying molecular interactions. Assay Drug Dev Technol. 2002;1:83–90.CrossRefGoogle Scholar
  22. 22.
    Goddard TD, Kneller DG, SPARKY3. San Francisco: University of California; 2001.Google Scholar
  23. 23.
    Güntert P, Brawn W, Wüthrich K. Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J Mol Biol. 1991;217:517–30.CrossRefGoogle Scholar
  24. 24.
    Güntert P, Mumenthaler C, Wüthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol. 1997;273:283–98.CrossRefGoogle Scholar
  25. 25.
    Bystrov VF. Prog Nucl Magn Reson Spectrosc. 1976, 41–81.Google Scholar
  26. 26.
    Güntert P, Wüthrich K. Improved efficiency of protein structure calculations from NMR data using the program DIANA with redundant dihedral angle constraints. J Biomol NMR. 1991;1:447–56.CrossRefGoogle Scholar
  27. 27.
    Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh MJ, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA. AMBER 11. San Francisco: University of California; 2010.Google Scholar
  28. 28.
    Weiner SJ, Kollman PA, Nguyen DT, Case DA. An all atom force field for simulations of proteins and nucleic acid. J Comput Chem. 1986;7:230–52.CrossRefGoogle Scholar
  29. 29.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–35.CrossRefGoogle Scholar
  30. 30.
    Ewald P. Die Berchnung optischer und elektrostatischer Gitterpotentiale. Ann Phys. 1921;64:253–87.CrossRefGoogle Scholar
  31. 31.
    Darden T, York D, Pedersen L. Particle Mesh Ewald: an N-log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98:10089–92.CrossRefGoogle Scholar
  32. 32.
    Torda AE, Scheek RM, van Gunsteren WF. Time-dependent distance restraints in molecular-dynamics simulations. Chem Phys Lett. 1989;57:289–94.CrossRefGoogle Scholar
  33. 33.
    Pearlman DA, Kollman PA. Are time-averaged restraints necessary for nuclear-magnetic-resonance refinement a model study for DNA. J Mol Biol. 1991;220:457–79.CrossRefGoogle Scholar
  34. 34.
    Koradi R, Billeter M, Wuthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996;14:51–5.CrossRefGoogle Scholar
  35. 35.
    Shamos MI, Hoey D. Closest-point problems. In: Proceedings of 16th annual IEEE symposium on the foundations of computer science. 1975. AQ6, p. 151–62.Google Scholar
  36. 36.
    Rohlf FJ. A probabilistic minimum spanning tree algorithm. Inform Process Lett. 1978;7:44–9.CrossRefGoogle Scholar
  37. 37.
    Bentley JL, Friedman JH. Fast algorithms for constructing minimal spanning trees in coordinate spaces. IEEE Trans Comput. C-27. 1978;6:97–105.CrossRefGoogle Scholar
  38. 38.
    Bentley JL, Weide BW, Yao AC. Optimal expected-time algorithms for closest point problems. ACM Trans Math Softw. 1980;6:563–80.CrossRefGoogle Scholar
  39. 39.
    Wyrzykowski D, Zarzeczańska D, Jacewicz D, Chmurzyński L. Investigation of copper(II) complexation by glycylglycine using isothermal titration calorimetry. J Therm Anal Calorim. 2011;105:1043–7.CrossRefGoogle Scholar
  40. 40.
    Wyrzykowski D, Pilarski B, Jacewicz D, Chmurzyński L. Investigation of metal–buffer interactions using isothermal titration calorimetry. J Therm Anal Calorim. 2013;111:1829–36.CrossRefGoogle Scholar
  41. 41.
    Scholtz JM, Marqusee S, Baldwin RL, York EJ, Stewart JM, Santoro M, Bolen DW. Calorimetric determination of the enthalpy change for the α-helix to coil transition of an alanine peptide in water. PNAS. 1991;88:2854–8.CrossRefGoogle Scholar
  42. 42.
    La Rosa C, Milardi D, Grasso DJ, Guzzi R, Sportelli L. Thermodynamics of the thermal unfolding of azurin. J Phys Chem. 1995;99:14864–70.CrossRefGoogle Scholar
  43. 43.
    Wüthrich K. NMR of proteins and nucleic acids. New York: Wiley; 1986.Google Scholar
  44. 44.
    Wyrzykowski D, Tesmar A, Jacewicz D, Pranczk J, Chmurzyński L. Zinc(II) complexation by some biologically relevant pH buffers. J Mol Recognit. 2014;27:722–6.CrossRefGoogle Scholar
  45. 45.
    Mash HE, Chin YP. Complexation of copper by zwitter ionic aminosulfonic (Good) buffers. Anal Chem. 2003;75:671–7.CrossRefGoogle Scholar
  46. 46.
    Goldberg RN, Kishore N, Lennen RM. Thermodynamic quantities for the ionization reactions of buffers. J Phys Chem. 2002;31:231–70.Google Scholar
  47. 47.
    Wyrzykowski D, Anusiewicz I, Pilarski B, Jacewicz D, Chmurzyński L. Investigations of coordinating properties of oxydiacetate and thiodiacetate anions towards Zn2+ ions in solutions. Inorg Chem Acta. 2013;405:163–8.CrossRefGoogle Scholar
  48. 48.
    Makowska J, Żmudzińska W, Uber D, Chmurzyński L. A study of the influence of charged residues on beta-hairpin formation by nuclear magnetic resonance and molecular dynamics. Protein J. 2014;33:525–35.CrossRefGoogle Scholar
  49. 49.
    Wilson KA, Bouchard JJ, Peng JW. Interdomain interactions support interdomain communication in human Pin1. Biochemistry. 2013;52:6968–81.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Dorota Uber
    • 1
  • Dariusz Wyrzykowski
    • 1
  • Caterina Tiberi
    • 2
    • 3
  • Giuseppina Sabatino
    • 2
    • 3
  • Wioletta Żmudzińska
    • 4
  • Lech Chmurzyński
    • 1
  • Anna Maria Papini
    • 2
    • 3
  • Joanna Makowska
    • 1
  1. 1.Faculty of ChemistryUniversity of GdańskGdańskPoland
  2. 2.Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, Dipartimento di Chimica ‘Ugo Schiff’University of FlorenceSesto FiorentinoItaly
  3. 3.PeptLab@UCPc/o Laboratory of Chemical BiologyUniversity of Cergy-PontoiseCergy-PontoiseFrance
  4. 4.Laboratory of Biopolymer Structure, Intercollegiate Faculty of BiotechnologyUniversity of Gdańsk - Medical University of GdańskGdańskPoland

Personalised recommendations