Journal of Thermal Analysis and Calorimetry

, Volume 127, Issue 1, pp 645–654 | Cite as

Thermal curing of an epoxy-anhydride system modified with hyperbranched poly(ethylene imine)s with different terminal groups

  • J. M. Morancho
  • X. Fernández-Francos
  • C. Acebo
  • X. Ramis
  • J. M. Salla
  • À. Serra


New hyperbranched polymers (HBP) have been synthesized by reaction of a poly(ethylene imine) with phenyl and t-butyl isocyanates. These HBPs have been characterized by 1H-NMR (nuclear magnetic resonance of hydrogen) and Fourier transform infrared spectroscopy. Their influence on the curing and properties of epoxy-anhydride thermosets has been studied by different techniques: differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermogravimetry (TG). The curing kinetics has been studied with DSC. Integral isoconversional method and the Šesták–Berggren model have been used to determine the activation energy and the frequency factor. The kinetic parameters are very similar for all the studied systems at the middle stage of the process, but changes are observed at the beginning and at the end of the process when these modifiers are used. The HBPs reduce the glass transition temperature of the cured materials. In addition, from the DMA analysis it can be seen that the HBP modifier obtained from phenyl isocyanate hardly changes the storage modulus, but the obtained ones from t-butyl isocyanate decrease it. TG analysis reveals a decrease in the onset temperature of the degradation process upon addition of the HBPs.


Epoxy networks Thermal curing Hyperbranched polymers Kinetics 



The authors would like to thank MINECO (Ministerio de Economía y Competividad) and FEDER (Fondo Europeo de Desarrollo Regional) (MAT2014-53706-C03-01 and MAT2014-53706-C03-02) and to the Comissionat per a Universitats i Recerca del DIUE de la Generalitat de Catalunya (2014-SGR-67).


  1. 1.
    Riew CK, Siebert AR, Smith RW, Fernando M, Kinloch AJ. Toughened epoxy resins: performed particles as tougheners for adhesives and matrices. In: Riew CK, Kinloch AJ, editors. Toughened plastics II novel approaches in science and engineering. Advances in chemical series, vol. 252. Washington: American Chemical Society; 1996. p. 33–44.CrossRefGoogle Scholar
  2. 2.
    Saiki N, Yamazaki O, Ebe K. UV/heat dual-curable adhesive tapes for fabricating stacked packages of semiconductors. J Appl Polym Sci. 2008;108:1178–83.CrossRefGoogle Scholar
  3. 3.
    Kang B-U. Interfacial fracture behavior of epoxy adhesives for electronic components. J Korea Acad Ind Cooper Soc. 2011;12:1479–87.Google Scholar
  4. 4.
    May CA, Tanaka GY. Epoxy resins. In: May CA, editor. Chemistry and technology, chap 1. New York: Marcel Dekker; 1988.Google Scholar
  5. 5.
    Petrie EM. Epoxy adhesive formulations. New York: McGraw-Hill; 2006.Google Scholar
  6. 6.
    Pascault JP, Williams RJJ. Epoxy polymers: new materials and innovations. Weinheim: Wiley-VCH; 2010.CrossRefGoogle Scholar
  7. 7.
    Kinloch AJ, Shaw SJ, Tod DA, Hunston DL. Deformation and fracture behavior of a rubber-toughened epoxy: 1. Microstructure and fracture studies. Polymer. 1983;24:1341–54.CrossRefGoogle Scholar
  8. 8.
    Ho T-H, Wang C-S. Toughening of epoxy resins by modification with dispersed acrylate rubber for electronic packaging. J Appl Polym Sci. 1993;50:477–83.CrossRefGoogle Scholar
  9. 9.
    Mezzenga R, Boogh L, Månson JAE. A review of dendritic hyperbranched polymer as modifiers in epoxy composites. Compos Sci Technol. 2001;61:787–95.CrossRefGoogle Scholar
  10. 10.
    Guo QP, Habrard A, Park Y, Halley PJ, Simon GP. Phase separation, porous structure, and cure kinetics in aliphatic epoxy resin containing hyperbranched polyester. J Polym Sci B. 2006;44:889–99.CrossRefGoogle Scholar
  11. 11.
    Ratna D, Varley R, Simon GP. Toughening of trifunctional epoxy using an epoxy-functionalized hyperbranched polymer. J Appl Polym Sci. 2003;89:2339–45.CrossRefGoogle Scholar
  12. 12.
    He S, Shi K, Bai J, Zhang Z, Li L, Du Z, Zhang B. Studies on the properties of epoxy resins modified with chain-extended ureas. Polymer. 2001;42:9641–7.CrossRefGoogle Scholar
  13. 13.
    Evans D, Canfer SJ. Radiation stable, low viscosity impregnating resin systems for cryogenic applications. Adv Cryog Eng. 2000;46:361–8.Google Scholar
  14. 14.
    Ueki T, Nishijima S, Izumi Y. Designing of epoxy resin systems for cryogenic use. Cryogenics. 2005;45:141–8.CrossRefGoogle Scholar
  15. 15.
    Nishijima S, Honda Y, Okada T. Application of the positron annihilation method for evaluation of organic materials for cryogenic use. Cryogenics. 1995;35:779–81.CrossRefGoogle Scholar
  16. 16.
    Wu SH. Phase structure and adhesion in polymer blends; a criterion for rubber technology. Polymer. 1985;26:1855–63.CrossRefGoogle Scholar
  17. 17.
    Pearson RA, Yee AF. Toughening mechanisms in thermoplastic-modified epoxies: 1. Modification using poly(phenylene oxide). Polymer. 1993;34:3658–70.CrossRefGoogle Scholar
  18. 18.
    Hedrick JL, Yilgor I, Jurek M, Hedrick JC, Wilkes GL, McGrath JE. Chemical modification of matrix resin networks with engineering thermoplastics: 1. Synthesis, morphology, physical behaviour and toughening mechanisms of poly(arylene ether sulphone) modified epoxy networks. Polymer. 1991;32:2020–32.CrossRefGoogle Scholar
  19. 19.
    Wilkinson SP, Ward TC, McGrath JE. Effect of thermoplastic modifier variables on toughening a bismaleimide matrix resin for high-performance composite materials. Polymer. 1993;34:870–84.CrossRefGoogle Scholar
  20. 20.
    Kunz SC, Sayre JA, Assink RA. Morphology and toughness characterization of epoxy resins modified with amine and carboxyl terminated rubbers. Polymer. 1982;23:1897–906.CrossRefGoogle Scholar
  21. 21.
    Voit B. New developments in hyperbranched polymers. J Polym Sci A. 2000;38:2505–25.CrossRefGoogle Scholar
  22. 22.
    Boogh L, Pettersson B, Månson JAE. Dendritic hyperbranchesd polymers as tougheners for epoxy resins. Polymer. 1999;40:2249–61.CrossRefGoogle Scholar
  23. 23.
    Zhang D, Liang E, Li T, Chen S, Zhang J, Cheng X, Zhou J, Zhang A. The effect of molecular weight of hyperbranched epoxy resins with a silicone skeleton on performance. RSC Adv. 2013;3:9522–9.CrossRefGoogle Scholar
  24. 24.
    Sörensen K, Pettersson BO, Boogh L, Månson JAE. Dendritic polyester macromolecule in thermosetting resin matrix. PCT Pat./SE94/04440; 1994.Google Scholar
  25. 25.
    Zhang D, Jia D, Chen S. Kinetics of curing and thermal degradation of hyperbranched epoxy (HTDE)/diglycidyl ether of bisphenol-A epoxy hybrid resin. J Thermal Anal Calorim. 2009;98:819–24.CrossRefGoogle Scholar
  26. 26.
    Zhang Y, Zhang D, Qin C, Xu J. Physical and mechanical properties of dental nanocomposites composed of aliphatic epoxy resin and epoxidized aromatic hyperbranched polymers. Polym Compos. 2009;30:176–81.CrossRefGoogle Scholar
  27. 27.
    Fernández-Francos X, Salla JM, Cadenato A, Morancho JM, Serra A, Mantecón A, Ramis X. A new strategy for controlling shrinkage of DGEBA resins cured by cationic copolymerization with hydroxyl-terminated hyperbranched polymers and ytterbium triflate as an initiator. J Appl Polym Sci. 2009;111:2822–9.CrossRefGoogle Scholar
  28. 28.
    Morancho JM, Cadenato A, Ramis X, Fernández-Francos X, Salla JM. Thermal curing and photocuring of an epoxy resin modified with a hyperbranched polymer. Thermochim Acta. 2010;510:1–8.CrossRefGoogle Scholar
  29. 29.
    Morancho JM, Cadenato A, Ramis X, Fernández-Francos X, Flores M, Salla JM. Effect of a hyperbranched polymer over the thermal curing and the photocuring of an epoxy resin. J Thermal Anal Calorim. 2011;105:479–88.CrossRefGoogle Scholar
  30. 30.
    Foix D, Fernández-Francos X, Salla JM, Serra A, Morancho JM, Ramis X. New thermosets obtained from bisphenol A diglycidyl ether and hydroxyl-ended hyperbranched polymers partially blocked with benzoyl and trimethylsilyl groups. Polym Int. 2011;60:389–97.CrossRefGoogle Scholar
  31. 31.
    Fernández-Francos X, Santiago D, Ferrando F, Ramis X, Salla JM, Serra A, Sangermano M. Network structure and thermomechanical properties of hybrid DGEBA networks cured with 1-methylimidazole and hyperbranched poly(ethyleneimine)s. J Polym Sci B Polym Phys. 2012;50:1489–503.CrossRefGoogle Scholar
  32. 32.
    Flores M, Fernández-Francos X, Ferrando F, Ramis X, Serra A. Efficient impact resistance improvement of epoxy/anhydride thermosets by adding hyperbranched polyesters partially modified with undecenoyl chains. Polymer. 2012;53:5232–41.CrossRefGoogle Scholar
  33. 33.
    Vandenabeele-Trambouze O, Mion L, Garrelly L, Commeyras A. Reactivity of organic isocyanates with nucleophilic compounds: amines; alcohols thiols; oximes; and phenols in dilute organic solutions. Adv Envir Res. 2001;6:45–55.CrossRefGoogle Scholar
  34. 34.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  35. 35.
    Liu H, Chen Y, Shen Z. Thermoresponsive hyperbranched polyethylenimines with isobutyramide functional groups. J Polym Sci A Polym Chem. 2007;45:1177–84.CrossRefGoogle Scholar
  36. 36.
    Santiago D, Fernández-Francos X, Ramis X, Salla JM, Sangermano M. Comparative curing kinetics and thermal-mechanical properties of DGEBA thermosets cured with a hyperbranched poly(ethyleneimine) and an aliphatic triamine. Thermochim Acta. 2011;526:9–21.CrossRefGoogle Scholar
  37. 37.
    Flores M, Fernández-Francos X, Ramis X, Serra A. Novel epoxy-anhydride thermosets modified with a hyperbranched polyester as toughness enhancer. Thermochim Acta. 2012;544:17–26.CrossRefGoogle Scholar
  38. 38.
    Montserrat S, Andreu G, Cortés P, Calventus Y, Colomer P, Hutchinson JM, Málek J. Addition of a reactive diluent to a catalyzed epoxy-anhydride system. I. Influence on the cure kinetics. J Appl Polym Sci. 1996;61:1663–74.CrossRefGoogle Scholar
  39. 39.
    Xu J, Holst M, Wenzel M, Alig I. Calorimetric studies on an anhydride cured epoxy resin from diglycidyl ether of bisphenol-A and diglycidyl ether of poly(propylene glycol). I. Onset of diffusion control during isothermal polymerization. J Polym Sci B Polym Phys. 2008;46:2155–65.CrossRefGoogle Scholar
  40. 40.
    Vyazovkin S, Wight CA. Kinetics in solids. Annu Rev Phys Chem. 1997;48:125–49.CrossRefGoogle Scholar
  41. 41.
    Schaber PM, Colson J, Higgins S, Thielen D, Anspach B, Brauer J. Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim Acta. 2004;424:131–42.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Thermodynamics Laboratory, Heat Engines Department, ETSEIBUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Department of Analytical and Organic ChemistryUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations