Skip to main content
Log in

Heating rate effect on the thermal behavior of some clays and their blends with oil shale ash additives

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The heating rate effect on the thermal behavior of clays from Arumetsa and Kunda deposits (Estonia) and an illitic clay from Füzérradvány (Hungary) was studied. Experiments were carried out under dynamic heating condition up to 1050 °C at the heating rates of 1.25, 2.5, 5 and 10 °C min−1 in a stream of gas mixture containing 79 % of Ar and 21 % of O2 with Setaram Labsys 1600 analyzer. Two different ashes were used as additives: the electrostatic precipitator ash from the first field and the cyclone ash formed, respectively, at circulating fluidized bed combustion (temperatures 750–830 °C) and pulverized firing (temperatures 1200–1400 °C) of Estonian oil shale at Estonian Power Plant. For calculation of kinetic parameters, the TG data were processed by the differential isoconversional Friedman method. The results of thermal analysis and the variation of the value of activation energy E along the reaction progress α indicated the complex character of decomposition of clays and their blends with Estonian oil shale ashes, and the certain differences in thermal behavior of different clays depending on their origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cultrone G, Sebastián E. Fly ash addition in clayey materials to improve the quality of solid bricks. Constr Build Mater. 2009;23:1178–84.

    Article  Google Scholar 

  2. Sokolar R, Smetanova L. Dry pressed ceramic tiles based on fly ash–clay body: influence of fly ash granulometry and pentasodium triphosphate addition. Ceram Int. 2010;36:215–21.

    Article  CAS  Google Scholar 

  3. Sokolar R, Vodova L. The effect of fluidized fly ash on the properties of dry pressed ceramic tiles based on fly ash–clay body. Ceram Int. 2011;37:2879–85.

    Article  CAS  Google Scholar 

  4. Queralt I, Querol X, López-Soler A, Plana F. Use of coal fly ash for ceramics: a case study for a large Spanish power station. Fuel. 1997;76(8):787–91.

    Article  CAS  Google Scholar 

  5. Chandra N, Sharma P, Pashkov GL, Voskresenskaya EN, Amritphale SS, Baghel NS. Coal fly ash utilization: low temperature sintering of wall tiles. Waste Manag. 2008;28:1993–2002.

    Article  Google Scholar 

  6. Castelein O, Soulestin B, Bonnet JP, Blanchart P. The influence of heating rate on the thermal behaviour and mullite formation from a kaolin raw material. Ceram Int. 2001;27:517–22.

    Article  CAS  Google Scholar 

  7. Štubňa I, Trník A, Vozár L. Deossidrilazione della caolinite—Una breva rassegna (dehydroxylation of kaolinite—a short review). Ceramurgia + Ceramica Acta. 2006;36:257–60.

    Google Scholar 

  8. Štubňa I, Varga G, Trník A. Investigation of kaolinite dehydroxylation is still interesting. Épitoanyag. 2006;58:6–9.

    Google Scholar 

  9. Zemenová P, Kloužkova A, Kohoutková M, Král R. Investigation of the first and second dehydroxylation of kaolinite. J Therm Anal Calorim. 2014;116:633–9.

    Article  Google Scholar 

  10. Sahnoune F, Saheb N, Khamel B, Takkouk Z. Thermal analysis of dehydroxylation of Algerian kaolinite. J Therm Anal Calorim. 2012;107:1067–72.

    Article  CAS  Google Scholar 

  11. Yilmaz MS, Kalpakli Y, Pişkin S. Thermal behavior and dehydroxylation kinetics of naturally occurring sepiolite and bentonite. J Therm Anal Calorim. 2013;114:1191–9.

    Article  Google Scholar 

  12. Ptáček P, Šoukal F, Opravil T, Nosková M, Havlica J, Brandštetr J. The non-isothermal kinetic analysis of the thermal decomposition of kaolinite by effluent gas analysis technique. Powder Technol. 2010;203:272–6.

    Article  Google Scholar 

  13. Ptáček P, Kubátová D, Havlica J, Brandštetr J, Šoukal F, Opravil T. The non-isothermal kinetic analysis of the thermal decomposition of kaolinite by thermogravimetric analysis. Powder Technol. 2010;204:222–37.

    Article  Google Scholar 

  14. Wang H, Li C, Peng Z, Zhang S. Characterization and thermal behavior of kaolin. J Therm Anal Calorim. 2011;105:157–60.

    Article  CAS  Google Scholar 

  15. Podoba R, Štubňa I, Trnovcová V, Trník A. Temperature dependence of DC electrical conductivity of kaolin. J Therm Anal Calorim. 2014;118:597–601.

    Article  CAS  Google Scholar 

  16. Trník A, Štubňa I, Moravčíková J. Sound velocity of kaolin in the temperature range from 20°C to 1100°C. Int J Thermophys. 2009;30:1323–8.

    Article  Google Scholar 

  17. Souza GP, Sanchez R, Holanda JNF. Thermal and structural characterization of Brazilian south-eastern kaolonitic clays. J Therm Anal Calorim. 2003;73:293–305.

    Article  CAS  Google Scholar 

  18. Gualtieri AF, Ferrari S. Kinetics of illite dehydroxylation. Phys Chem Miner. 2006;33:490–501.

    Article  CAS  Google Scholar 

  19. Húlan T, Trník A, Štubňa I, Bačík P, Kaljuvee T, Vozár L. Development of Young’s modulus of illitic clay during heating up to 1100°C. Mater Sci (Medžiagotyra). 2015;21:429–34.

    Google Scholar 

  20. Kaljuvee T, Štubňa I, Somelar P, Mikli V, Kuusik R. Thermal behavior of some Estonian clays and their mixtures with oil shale ash additives. J Therm Anal Calorim. 2014;118:891–9.

    Article  CAS  Google Scholar 

  21. Taylor JC. Computer programs for standardless quantitative analysis of minerals using the full powder diffraction profile. Powder Diffr. 1991;6:2–9.

    Article  CAS  Google Scholar 

  22. Ward CR, Taylor JC, Cohen DR. Quantitative mineralogy of sandstones by X-ray diffractrometry and normative analysis. J Sed Geol. 1999;69:1050–62.

    CAS  Google Scholar 

  23. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to phenolic plastic. J Polym Sci. 1965;6C:183–95.

    Google Scholar 

  24. AKTS Software and Setaram Instruments: A global solution for kinetic analysis and determination of the thermal stability of materials. AKTS AG. Switzerland. 2006.

  25. Frost RL, Vassallo AM. The dehydroxylation of kaolinite clay minerals using infrared emission spectroscopy. Clays Clay Miner. 1996;44:635–51.

    Article  CAS  Google Scholar 

  26. Aras A. The change of phase composition in kaolinite- and illite-rich clay-based ceramic bodies. Appl Clay Sci. 2004;24:257–69.

    Article  CAS  Google Scholar 

  27. Fernandez R, Martirena F, Scrivener KL. The origin of the pozzolanic activity of calcined clay minerals: a comparison between kaolinite, illite and montmorillonite. Cem Concr Res. 2011;41:113–22.

    Article  CAS  Google Scholar 

  28. Dweck J. Qualitative and quantitative characterization of Brazilian natural and organophilic clays by thermal analysis. J Therm Anal Calorim. 2008;92:129–35.

    Article  CAS  Google Scholar 

  29. Paulik F, Paulik J, Arnold M. Kinetics and mechanism of decomposition of pyrite under conventional and quasi-isothermal–quasi-isobaric thermoanalytical conditions. J Therm Anal Calorim. 1982;25:313–25.

    Article  CAS  Google Scholar 

  30. Pelovski Y, Petkova V. Invesigation on thermal decomposition of pyrite. Part I. J Therm Anal Calorim. 1999;56:95–9.

    Article  CAS  Google Scholar 

  31. Kuusik R, Uibu M, Kirsimäe K. Characterization of oil shale ashes formed at industrial-scale CFBC boilers. Oil Shale. 2005;22:407–19.

    CAS  Google Scholar 

  32. Kaljuvee T, Trikkel A, Kuusik R. Decarbonization of natural lime-containing materials and reactivity of calcined products towards SO2 and CO2. J Therm Anal Calorim. 2001;64:1229–40.

    Article  CAS  Google Scholar 

  33. Kaljuvee T, Kuusik R, Trikkel A. SO2 binding into the solid phase during thermooxidation of blends based on Estonian oil shale semicoke. J Therm Anal Calorim. 2003;72:393–404.

    Article  CAS  Google Scholar 

  34. Kaljuvee T, Toom M, Trikkel A, Kuusik R. Reactivity of oil shale ashes in the binding of SO2. J Therm Anal Calorim. 2007;88:51–8.

    Article  CAS  Google Scholar 

  35. Brown ME, Maciejewski M, Vyazovkin S, et al. Computational aspects of kinetic analysis. Part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Institutional Research Funding (IUT33-19) of the Estonian Ministry of Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiit Kaljuvee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaljuvee, T., Štubňa, I., Húlan, T. et al. Heating rate effect on the thermal behavior of some clays and their blends with oil shale ash additives. J Therm Anal Calorim 127, 33–45 (2017). https://doi.org/10.1007/s10973-016-5347-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5347-4

Keywords

Navigation