Journal of Thermal Analysis and Calorimetry

, Volume 125, Issue 1, pp 497–508 | Cite as

Critical evaluation of partial molar volumes and excess partial molar volumes of molten fluoride melts

  • Blanka Kubíková
  • Miroslav Boča
  • Jarmila Mlynáriková
  • Zuzana Netriová
  • Zuzana Vasková


Different procedures of evaluation of partial molar volume and excess partial molar volume have been applied for three binary or quasi-binary molten fluoride systems: KF–K2TaF7, K2ZrF6–K2TaF7 and (LiF–NaF–KF)eut–K2ZrF6. In the first procedure partial molar volume is calculated based on mathematical fitting of molar volume, while in the second procedure partial molar volume is calculated based on mathematical fitting of excess molar volume. It was shown that both procedures are in principle consistent. However, some inconsistencies on values of partial molar volume can occur when local extremes are observed on concentration dependence of molar volume. In such situation, proper selection of mathematical functions is essential which requires relatively high density of experimental data. Moreover, when data on only restricted concentration range are available, only procedure of molar volume fitting is applicable for calculation of partial molar volume.


Density Molar volume Partial molar volume and excess partial molar volume Molten fluoride salts 



The present work was financially supported by the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences under no. 2/0095/12 and 2/0116/14. This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0460-10, LPP-0344-09 and LPP-0345-09.


  1. 1.
    Sato Y. Volumetric behavior of molten rare earth chloride-alkaline chloride binary mixtures. Kinzoku. 2007;77(6):611–6.Google Scholar
  2. 2.
    Bloom H, Boyd PWD, Laver JL, Wong J. Molten salt mixtures. XI. Integral and partial molar volumes in the molten salt systems PbCl2 + NaCl, PbCl2 + RbCl, PbCl2 + CsCl, CdCl2 + RbCl, and CdCl2 + CsCl. Aust J Chem. 1966;19(9):1591–6. doi: 10.1071/ch9661591.CrossRefGoogle Scholar
  3. 3.
    Lamprecht GJ, Rohwer CH. Thermodynamic properties of the molten salt system cesium bromide-cuprous bromide. J Chem Eng Data. 1980;25(2):110–3. doi: 10.1021/je60085a026.CrossRefGoogle Scholar
  4. 4.
    Boca M, Ivanova Z, Kucharik M, Cibulkova J, Vasiljev R, Chrenkova M. Density and surface tension of the system KF–K2TaF7–Ta2O5. Int J Res Phys Chem Chem Phys. 2006;220(9):1159–80. doi: 10.1524/zpch.2006.220.9.1159.Google Scholar
  5. 5.
    Cibulkova J, Chrenkova M, Vasiljev R, Kremenetsky V, Boca M. Density and viscosity of the (LiF + NaF + KF)(eut) (1) + K2TaF7 (2) + Ta2O5 (3) melts. J Chem Eng Data. 2006;51(3):984–7. doi: 10.1021/je050490g.CrossRefGoogle Scholar
  6. 6.
    Cibulkova J, Chrenkova M, Boca M. Density of the system KF + K2NbF7 + Nb2O5. J Chem Eng Data. 2005;50(2):477–80. doi: 10.1021/je049702k.CrossRefGoogle Scholar
  7. 7.
    Chrenkova M, Danek V, Silny A. Density of the system LiF–KF–K2NbF7. Chem Pap. 2000;54(5):272–6.Google Scholar
  8. 8.
    Chrenkova M, Danielik V, Silny A, Danek V. Phase diagram of the system KF–KCl–KBF4–K2TiF6. Chem Pap. 2001;55(2):75–80.Google Scholar
  9. 9.
    Peng Q, Yang X, Ding J, Wei X, Yang J. Thermodynamic performance of the NaNO3–NaCl–NaNO2 ternary system. J Therm Anal Calorim. 2013;115(2):1753–8. doi: 10.1007/s10973-013-3389-4.CrossRefGoogle Scholar
  10. 10.
    Wang J, Lai M, Han H, Ding Z, Liu S, Zeng D. Thermodynamic modeling and experimental verification of eutectic point in the LiNO3–KNO3–Ca(NO3)2 ternary system. J Therm Anal Calorim. 2014;119(2):1259–66. doi: 10.1007/s10973-014-4218-0.CrossRefGoogle Scholar
  11. 11.
    Fernández AG, Galleguillos H, Fuentealba E, Pérez FJ. Thermal characterization of HITEC molten salt for energy storage in solar linear concentrated technology. J Therm Anal Calorim. 2015;122(1):3–9. doi: 10.1007/s10973-015-4715-9.CrossRefGoogle Scholar
  12. 12.
    Atkins P, de Paula J. Physical chemistry. 8th ed. New York: W. H. Freeman and Company; 2006.Google Scholar
  13. 13.
    ChemWiki: The Dynamic Chemistry Hypertext > Textbook Maps > Physical Chemistry Textbook Maps > DeVoe’s “Thermodynamics and Chemistry” > Chapter 9: Mixtures > 9.2 Partial Molar Quantities. Accessed Aug 12 2015.Google Scholar
  14. 14.
    Cohen ER, Cvitas T, Frey JG, Holmstrom B, Kuchitsu M, Marquardt R, et al. Quantities, units and symbols in physical chemistry. IUPAC green book. 3rd ed. Cambridge: IUPAC & RSC Publishing; 2007.Google Scholar
  15. 15.
    Berry RS, Rice SA, Ross J. Physical chemistry. New York: Wiley; 1979.Google Scholar
  16. 16.
    Moore WJ. Physical chemistry. 4th ed. Longmans: Green and Co.; 1963.Google Scholar
  17. 17.
    Kondaiah M, Krishna RD. Correlation of excess molar volumes with Redlich–Kister polynomial and evaluation of partial molar volumes, excess partial molar volumes in some binary mixtures at 308.15 K. Int J Res Pure Appl Phys. 2013;3(4):43–9.Google Scholar
  18. 18.
    Nain AK. Densities and volumetric properties of binary mixtures of tetrahydrofuran with some aromatic hydrocarbons at temperatures from 278.15 to 318.15 K. J Solut Chem. 2006;35(10):1417–39. doi: 10.1007/s10953-006-9071-8.CrossRefGoogle Scholar
  19. 19.
    Touriño A, Hervello M, Gayol A, Marino G, Iglesias M. Excess molar volumes of the ternary mixtures chlorobenzene + n-hexane + linear aliphatic alkane (C11–C12) at 298.15 K. J Mol Liq. 2005;122(1–3):87–94. doi: 10.1016/j.molliq.2005.03.001.CrossRefGoogle Scholar
  20. 20.
    Ghazoyan HH, Markarian SA. Densities, excess molar and partial molar volumes for diethylsulfoxide with methanol or ethanol binary systems at temperature range 298.15–323.15 K: Yerevan State University; 2014.Google Scholar
  21. 21.
    Stec M, Tatarczuk A, Śpiewak D, Wilk A. Densities, excess molar volumes, and thermal expansion coefficients of aqueous aminoethylethanolamine solutions at temperatures from 283.15 to 343.15 K. J Solut Chem. 2014;43(5):959–71. doi: 10.1007/s10953-014-0175-2.CrossRefGoogle Scholar
  22. 22.
    Fernandez R, Oestvold T. Surface tension and density of molten fluorides and fluoride mixtures containing cryolite. Acta Chem Scand. 1989;43:151–9. doi: 10.3891/acta.chem.scand.43-0151.CrossRefGoogle Scholar
  23. 23.
    Cordray JH, Eckert CA. Partial molar excess volumes at infinite dilution of binary-liquid mixtures of nonelectrolytes. J Chem Eng Data. 1987;32(1):83–5. doi: 10.1021/je00047a024.CrossRefGoogle Scholar
  24. 24.
    Mlynarikova J, Boca M, Kipsova L. The role of the alkaline cations in the density and volume properties of the melts MF–K2NbF7 (MF = LiF–NaF, LIF–KF and NaF–KF). J Mol Liq. 2008;140(1–3):101–7. doi: 10.1016/j.molliq.2008.02.002.CrossRefGoogle Scholar
  25. 25.
    Kubikova B, Mackova I, Boca M. Phase analysis and volume properties of the (LiF–NaF–KF)(eut)-K2ZrF6 system. Monatshefte Fur Chem. 2013;144(3):295–300. doi: 10.1007/s00706-012-0886-2.CrossRefGoogle Scholar
  26. 26.
    Barborík P, Vasková Z, Boča M, Priščák J. Physicochemical properties of the system (LiF + NaF + KF(eut.) + Na7Zr6F31): phase equilibria, density and volume properties, viscosity and surface tension. J Chem Thermodyn. 2014;76:145–51. doi: 10.1016/j.jct.2014.03.024.CrossRefGoogle Scholar
  27. 27.
    Kubíková B, Mlynáriková J, Vasková Z, Jeřábková P, Boča M. Phase analysis and density of the system K2ZrF6–K2TaF7. Monatshefte für Chem Chem Mon. 2014;145(8):1247–52. doi: 10.1007/s00706-014-1214-9.CrossRefGoogle Scholar
  28. 28.
    Eyring H, Hirschfelder J. The theory of the liquid state. J Phys Chem. 1937;41:249–57. doi: 10.1021/j150380a007.CrossRefGoogle Scholar
  29. 29.
    Kincaid JF, Eyring H. Free volumes and free angle ratios of molecules in liquids. J Chem Phys. 1938;6:620–9. doi: 10.1063/1.1750134.CrossRefGoogle Scholar
  30. 30.
    Imai T. Molecular theory of particular molar volume and its applications to biomolecular systems. Condens Matter Phys. 2007;3(51):343–61.CrossRefGoogle Scholar
  31. 31.
    Chrenkova M, Cibulkova J, Simko F, Danek V. Density of the system LiF–NaF–K2NbF7. Int J Res Phys Chem Chem Phys. 2005;219(2):247–55.Google Scholar
  32. 32.
    Boca M, Cibulkova J, Kubikova B, Chrenkova A, Danek V. Physicochemical analysis and structure of melts of the system LiF–NaF–K2NbF7. J Mol Liq. 2005;116(1):29–36. doi: 10.1016/j.molliq.2004.05.002.CrossRefGoogle Scholar
  33. 33.
    Boča M, Ivanová Z, Kucharík M, Cibulková J, Vasiljev R, Chrenková M. Density and surface tension of the system KF–K2TaF7–Ta2O5. Z Phys Chem. 2006;220(9):1159–80. doi: 10.1524/zpch.2006.220.9.1159.CrossRefGoogle Scholar
  34. 34.
    Kubikova B, Kucharik M, Vasiljev R, Boca M. Phase equilibria, volume properties, surface tension, and viscosity of the (FLiNaK)(eut) + K2NbF7 Melts. J Chem Eng Data. 2009;54(7):2081–4. doi: 10.1021/je800979q.CrossRefGoogle Scholar
  35. 35.
    Korenko M, Vasková Z, Priščák J, Šimko F, Ambrová M, Shi Z. Density, viscosity and electrical conductivity of the molten cryolite electrolytes (Na3AlF6–SiO2) for solar grade silicon (Si–SoG) electrowinning. Silicon. 2014;7(3):261–7. doi: 10.1007/s12633-014-9214-2.CrossRefGoogle Scholar
  36. 36.
    Chrenkova M, Danek V, Vasiljev R, Silny A, Kremenetsky V, Polyakov E. Density and viscosity of the (LiF–NaF–KF)(eut)–KBF4–B2O3 melts. J Mol Liq. 2003;102(1–3):213–26.CrossRefGoogle Scholar
  37. 37.
    Chrenkova M, Boca M, Kucharik M, Danek V. Density of melts of the system KF–K2MoO4–SiO2. Chem Pap. 2002;56(5):283–7.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Blanka Kubíková
    • 1
  • Miroslav Boča
    • 1
  • Jarmila Mlynáriková
    • 1
  • Zuzana Netriová
    • 1
  • Zuzana Vasková
    • 1
  1. 1.Department of Molten Systems, Institute of Inorganic ChemistrySlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations