Journal of Thermal Analysis and Calorimetry

, Volume 127, Issue 1, pp 155–162 | Cite as

Thermal stability of the solvothermal-synthesized MnFe2O4 nanopowder

  • Marcela Stoia
  • Cornelia Păcurariu
  • Eliza-Cornelia Muntean


Manganese ferrite nanopowder was prepared by a new solvothermal method, using 1,2 propanediol as solvent and KOH as precipitant. The as-synthesized powder, by solvothermal treatment in autoclave at 195 °C, for 12 h, consisted of fine manganese ferrite nanoparticles. The further thermal treatment of the initial manganese ferrite powder to higher temperature resulted in manganese ferrite decomposition due to Mn(II) oxidation to Mn(III), as observed by X-ray diffraction. FT-IR spectroscopy has evidenced that the oxidation takes place even at 400 °C. The oxidation of Mn(II) to Mn(III) was studied by TG/DSC simultaneous thermal analysis. It was shown that Mn(II) oxidation takes place in a very small extent up to 400 °C. The main oxidation step occurs around 600 °C, when a clear mass gain is registered on TG curve, associated with a sharp exothermic effect on DSC curve. The exothermic effect is smaller in case of the powder annealed at 400 °C, confirming the superficial oxidation of Mn(II) up to 400 °C. In order to avoid Mn(II) oxidation, the powder obtained at 400 °C was further annealed at 800 °C in argon atmosphere, without degassing, when manganese ferrite MnFe2O4 was obtained as major crystalline phase (69 %). All manganese ferrite powders showed a superparamagnetic behavior, with maximum magnetization of 51 emu g−1 in case of the as-synthesized powder, characteristic of magnetic ferrite nanopowders.


Manganese ferrite Nanopowder Solvothermal 1,2-Propanediol Thermal stability 



This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS—UEFISCDI, project number PN-II-RU-TE-2014-4-0514.


  1. 1.
    Ahmeda MA, El-dek SI, Mansour SF, Okasha N. Modification of Mn nanoferrite physical properties by gamma, neutron, and laser irradiations. Solid State Sci. 2011;13:1180–6.CrossRefGoogle Scholar
  2. 2.
    Vamvakidis K, Sakellari D, Angelakeris M, Dendrinou-Samara C. Size and compositionally controlled manganese ferrite nanoparticles with enhanced magnetization. J Nanopart Res. 2013;. doi: 10.1007/s11051-013-1743-x.Google Scholar
  3. 3.
    Chicinas I, Marinca TF, Neamtu BV, Pascuta P, Pop V. Thermal stability of the manganese-nickel mixed ferrite and iron phases in the Mn0.5Ni0.5Fe2O4/Fe composite/nanocomposite powder. J Therm Anal Calorim. 2014;118:1269–75.CrossRefGoogle Scholar
  4. 4.
    Sharma US, Sharma RN, Shah R. Physical and magnetic properties of manganese ferrite nanoparticles. Int J Eng Res Appl. 2014;4:14–7.Google Scholar
  5. 5.
    Zhang Z, Wanga Y, Tan Q, Zhong Z, Su F. Facile solvothermal synthesis of mesoporous manganese ferrite (MnFe2O4) microspheres as anode materials for lithium-ion batteries. J Colloid Interface Sci. 2013;398:185–92.CrossRefGoogle Scholar
  6. 6.
    Kedesdy HH, Tauber A. Formation of manganese ferrite by solid-state reaction. J Am Ceram Soc. 1956;39:425–31.CrossRefGoogle Scholar
  7. 7.
    Kundu TK, Mishra S. Nanocrystalline spinel ferrites by solid state reaction route. Bull Mater Sci. 2008;31:507–10.CrossRefGoogle Scholar
  8. 8.
    Berbenni V, Marini A, Profumo A, Cucca L. The effect of high energy milling on the solid state synthesis of MnFe2O4 from mixtures of MnO–Fe2O3 and Mn3O4–Fe2O3. Tübingen: Verlag der Zeitschrift für Naturforschung; 2014. doi: 10.1515/znb-2003-0510.Google Scholar
  9. 9.
    Yang H, Zhang C, Shi X, Hu H, Du X, Fang Y, Ma Y, Wu H, Yang S. Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging. Biomaterials. 2010;31:3667–73.CrossRefGoogle Scholar
  10. 10.
    Stoia M, Muntean C, Militaru B. Fine MnFe2O4 nanoparticles for potential environmental applications. J Therm Anal Calorim. 2015;121:1003–10.CrossRefGoogle Scholar
  11. 11.
    Wolski W, Wolska E, Kaczmarek J, Piszora P. Formation of manganese ferrite by modified hydrothermal method. Phys Status Solidi A. 1995;152:K19–22.CrossRefGoogle Scholar
  12. 12.
    Amighian J, Mozaffari M, Nasr B. Preparation of nano-sized manganese ferrite (MnFe2O4) via coprecipitation method. Phys Status Solidi C. 2006;3:3188–92.CrossRefGoogle Scholar
  13. 13.
    Deraz NM, Alarif A. Controlled synthesis, physicochemical and magnetic properties of nano-crystalline Mn ferrite system. Int J Electrochem Sci. 2012;7:5534–43.Google Scholar
  14. 14.
    Daliya SM, Juang RS. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. J Chem Eng. 2007;129:51–65.CrossRefGoogle Scholar
  15. 15.
    Dong CH, Wang GX, Shi L, Guo DW, Jiang CJ, Xue DS. Investigation of the thermal stability of Mn ferrite particles synthesized by a modified co-precipitation method. Sci China Phys Mech Astron. 2013;56:568–72.CrossRefGoogle Scholar
  16. 16.
    Xiaomei L, Xin L, Wang L, Zhang F, Duan L. Preparation and characterization of MnFe2O4 in the solvothermal process: their magnetism and electrochemical properties. Mater Res Bull. 2013;48:2511–6.CrossRefGoogle Scholar
  17. 17.
    Qian Y. Solvothermal synthesis of non-oxides nanomaterials. In: Sheng P, Tang Z, editors. Nano science and technology: novel structures and phenomena. Boca Raton: CRC Press LLC; 2003. p. 80–6.Google Scholar
  18. 18.
    Mihalca I, Ercuta A. Structural relaxation in Fe70Cr10.5P11.5Mn1.5C6.5 amorphous alloy. J Optoelectron Adv Mater. 2003;5:245–50.Google Scholar
  19. 19.
    Joint Committee on Powder Diffraction Standards-International Center for Diffraction Data, Swarthmore, 1993.Google Scholar
  20. 20.
    Lazarevi¢ ZC, Jovaleki¢ A, Milutinovi¢ MJ, Romcevi¢ N. Preparation and characterization of nano ferrites. Acta Phys Pol. 2012;121:682–6.CrossRefGoogle Scholar
  21. 21.
    Chhantbar MC, Trivedi UN, Tanna PV, Shah HJ, Vara RP, Joshi HH, Modi KB. Infrared spectral studies of Zn-substituted CuFeCrO4 spinel ferrite system. Indian J Phys. 2004;78A(3):32–6.Google Scholar
  22. 22.
    Patil RP, Delekar SD, Manec DR, Hankare PP. Synthesis, structural and magnetic properties of different metal ion substituted nanocrystalline zinc ferrite. Results Phys. 2013;3:129–33.CrossRefGoogle Scholar
  23. 23.
    Carta D, Casula MF, Mountjoy G, Corrias A. Formation and cation distribution in supported manganese ferrite nanoparticles: an X-ray absorption study. Phys Chem Chem Phys. 2008;10:3108–17.CrossRefGoogle Scholar
  24. 24.
    Kumar L, Kumar P, Narayan A, Kar M. Rietveld analysis of XRD patterns of different sizes of nanocrystalline cobalt ferrite. Int Nano Lett. 2013;3:8–12.CrossRefGoogle Scholar
  25. 25.
    Iyer R, Desai R, Upadhyay RV. Low temperature synthesis of nanosized Mn1−xZnxFe2O4 ferrites and their characterizations. Bull Mater Sci. 2009;32:141–7.CrossRefGoogle Scholar
  26. 26.
    Sahoo SK, Agarwal K, Singh AK, Polke BG, Raha KC. Characterization of γ- and α-Fe2O3 nano powders synthesized by emulsion precipitation-calcination route and rheological behaviour of α-Fe2O3. Int J Eng Sci Technol. 2010;2:118–26.Google Scholar
  27. 27.
    Cockayne E, Levin I, Wu H, Llobet A. The magnetic structure of bixbyite a-Mn2O3: a combined density functional theory DFT + U and neutron diffraction study. Phys Rev B. 2013;. doi: 10.1103/PhysRevB.87.184413.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Marcela Stoia
    • 1
    • 2
  • Cornelia Păcurariu
    • 1
  • Eliza-Cornelia Muntean
    • 1
  1. 1.Faculty of Industrial Chemistry and Environmental EngineeringPolitehnica University TimişoaraTimisoaraRomania
  2. 2.Research Institute for Renewable EnergyPolitehnica University TimişoaraTimisoaraRomania

Personalised recommendations