Journal of Thermal Analysis and Calorimetry

, Volume 124, Issue 2, pp 807–814 | Cite as

Flame-retardant effect of montmorillonite intercalation iron compounds in polypropylene/aluminum hydroxide composites system

  • Lei Liu
  • Hongkai Zhang
  • Lei Sun
  • Qinghong Kong
  • Junhao Zhang


Montmorillonite possesses nanometer size effect and layer blocking effect, and iron compounds have significant catalytic carbonization performance. Based on these above, the new montmorillonite intercalation iron compounds (MIICs) are designed and synthesized. The MIIC is a typical lamellar compound that holds the homogeneity crystal structure and the adjustable component. The MIIC was modified by cetyltrimethylammonium bromide and obtained organic MIIC (OMIIC). Polypropylene (PP)/aluminum hydroxide (ATH)/OMIIC nanocomposites were prepared via melting intercalation. The structures of PP/ATH/OMIIC nanocomposites were studied by XRD and transmission electron microscope, which indicate that OMIIC disperses well in PP composites, and PP/ATH/OMIIC nanocomposites have the exfoliated and intercalated structures. The combustion tests show that the small amount of OMIIC in PP/ATH composites can apparently favor UL94 test and suppress dripping phenomenon. The cone calorimeter tests indicate that the heat release rate is significantly reduced by the formation of nanocomposites, and the THR of the PP/ATH/OMIIC nanocomposites was decreased in comparison with that of the PP/ATH nanocomposites, which should be attributed to the formation of compact protective char layer.


Polypropylene Montmorillonite intercalation iron compounds Aluminum hydroxide Flame retardancy Thermal stability 



The work was financially supported by Natural Science Foundation of Jiangsu Province (Nos. BK20141293 and BK20150505), the Opening Project of State Key Laboratory of Fire Science (No. HZ2015-KF03), Jiangsu Government Scholarship Fund for Overseas Studies (Grant No. JS-2012-246), and Jiangsu University Scholarship Fund.


  1. 1.
    Zhang SQ, Li B, Lin M, Gao SL, Yi W. Effect of a novel phosphorus-containing compound on the flame retardancy and thermal degradation of intumescent flame retardant polypropylene. J Appl Polym Sci. 2011;122:3430–9.CrossRefGoogle Scholar
  2. 2.
    Casetta M, Delaval D, Traisnel M. Influence of the recycling process on the fire-retardant properties of PP/EPR blends. Macromol Mater Eng. 2011;296:495–505.CrossRefGoogle Scholar
  3. 3.
    Zhang JH, Yanagisawa K, Yao SS, Wong HT, Qiu YS, Zheng HJ. Large-scale controllable preparation and performance of hierarchical nickel microstructures by a seed-mediated solution hydrogen reduction route. J Mater Chem A. 2015;3:7877–87.CrossRefGoogle Scholar
  4. 4.
    Yu HO, Zhang ZJ, Wang Z, Jiang ZW, Liu J, Wang L, Wan D, Tang T. Double functions of chlorinated carbon nanotubes in its combination with Ni2O3 for reducing flammability of polypropylene. J Phys Chem C. 2010;114:13226–33.CrossRefGoogle Scholar
  5. 5.
    Zhang JH, Du J, Qian YT, Xiong SL. Synthesis, characterization and properties of carbon nanotubes microspheres from pyrolysis of polypropylene and maleated polypropylene. Mater Res Bull. 2010;45:15–20.CrossRefGoogle Scholar
  6. 6.
    Nie SB, Song L, Bao CL, Qian XD, Guo YQ, Hong NN, Hu Y. Synergistic effects of ferric pyrophosphate (FePP) in intumescent flame-retardant polypropylene. Polym Adv Technol. 2009;22:870–6.CrossRefGoogle Scholar
  7. 7.
    Lu HD, Wilkie CA. Study on intumescent flame retarded polystyrene composites with improved flame retardancy. Polym Degrad Stab. 2010;95:2388–95.CrossRefGoogle Scholar
  8. 8.
    Baliyan A, Hayasaki Y, Fukuda T, Uchida T, Nakajima Y, Hanajiri T, Maekawa T. Precise control of the number of walls of carbon nanotubes of a uniform internal diameter. J Phys Chem C. 2013;117:683–6.CrossRefGoogle Scholar
  9. 9.
    Liu H, Qi Z, Kong QH, Zhang XG, Li YJ, Zhang JH. Synergistic effect of organophilic Fe-montmorillonite on flammability in polypropylene/intumescent flame retardant system. J Therm Anal Calorim. 2014;117:693–9.CrossRefGoogle Scholar
  10. 10.
    Ma JJ, Yang JX, Huang YW, Cao K. Aluminum-organophosphorus hybrid nanorods for simultaneously enhancing the flame retardancy and mechanical properties of epoxy resin. J Mater Chem. 2012;22:2007–17.CrossRefGoogle Scholar
  11. 11.
    Wu QA, Bao JW, Zhang C, Liang RC, Wang B. The effect of thermal stability of carbon nanotubes on the flame retardancy of epoxy and bismaleimide/carbon fiber/buckypaper composites. J Therm Anal Calorim. 2011;103:242–73.Google Scholar
  12. 12.
    Schartel B, Weiss A, Sturm H, Kleemeier M, Hartwig A, Vogt C, Fischer RX. Layered silicate epoxy nanocomposites: formation of the inorganic-carbonaceous fire protection layer. Polym Adv Technol. 2011;22:1581–92.CrossRefGoogle Scholar
  13. 13.
    Kim H, Abdala AA, Macosko CW. Graphene/polymer nanocomposites. Macromolecules. 2010;43:6515–30.CrossRefGoogle Scholar
  14. 14.
    Seyfi J, Hejazi I, Sadeghi GMM, Davachi SM, Ghanbar S. Thermal degradation and crystallization behavior of blend-based nanocomposites: role of clay network formation. J Appl Polym Sci. 2012;123:2492–9.CrossRefGoogle Scholar
  15. 15.
    Pagacz J, Pielichowski K. Preparation and characterization of PVC/montmorillonite nanocomposites—a review. J Vinyl Addit Technol. 2009;15:61–76.Google Scholar
  16. 16.
    Fang KY, Li JA, Ke CH, Hu QL, Tao K, Zhu J, Yan Q. Intumescent flame retardation of melamine-modified montmorillonite on polyamide 6: enhancement of condense phase and flame retardance. Polym Eng Sci. 2011;51:377–85.CrossRefGoogle Scholar
  17. 17.
    Huang GB, Zhu BC, Shi HB. Combination effect of organics-modified montmorillonite with intumescent flame retardants on thermal stability and fire behavior of polyethylene nanocomposites. J Appl Polym Sci. 2011;121:1285–91.CrossRefGoogle Scholar
  18. 18.
    Wang SF, Hu Y, Zong RW, Tang Y, Chen ZY, Fan WC. Preparation and characterization of flame retardant ABS/montmorillonite nanocomposite. Appl Clay Sci. 2004;25:49–55.CrossRefGoogle Scholar
  19. 19.
    Gilman WJ, Jackson CL, Morgan AB. Flammability properties of polymer -layered -silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem Mater. 2000;12:1866–73.CrossRefGoogle Scholar
  20. 20.
    Wang DY, Wang YZ, Wang JS, Chen DQ. Thermal oxidative degradation behaviours of flame-retardant copolyesters containing phosphorous linked pendent group/montmorillonite nanocomposites. Polym Degrad Stab. 2005;87:171–6.CrossRefGoogle Scholar
  21. 21.
    Zhang JH, Du J, Qian YT, Yin QH, Zhang DJ. Shape-controlled synthesis and their magnetic properties of hexapod-like, flake-like and chain-like carbon -encapsulated Fe3O4 core/shell composites. Metal Sci Eng B. 2010;170:51–7.CrossRefGoogle Scholar
  22. 22.
    Zhang JH, Wan S, Bo Yan, Wang LB, Qian YT. Graphene encapsulated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. J Nanosci Nanotechnol. 2013;13:4364–9.CrossRefGoogle Scholar
  23. 23.
    Jiao CM, Chen XL. Flammability and thermal degradation of intumescent flame-retardant polypropylene composites. Polym Eng Sci. 2010;50:767–72.CrossRefGoogle Scholar
  24. 24.
    Kong QH, Hu Y, Song L, Yi CW. Synergistic flammability and thermal stability of polypropylene/aluminum trihydroxide/Fe-montmorillonite nanocomposites. Polym Adv Technol. 2009;20:404–9.CrossRefGoogle Scholar
  25. 25.
    Chen XL, Jiao CM, Zhang J. Microencapsulation of polyphosphate with hydroxyl silicone oil and its flame retardance in thermoplastic polyurethane. J Therm Anal Calorim. 2011;104:1037–43.CrossRefGoogle Scholar
  26. 26.
    Carosio F, Alongi J, Malucelli G. Layer by layer ammonium polyphosphate-based coatings for flame retardancy of polyester-cotton blends. Carbohydr Polym. 2012;88:1460–9.CrossRefGoogle Scholar
  27. 27.
    Wu Q, Zhu W, Zhang C, Liang ZY, Wang B. Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber reinforced epoxy composites. Carbon. 2010;48:1799–806.CrossRefGoogle Scholar
  28. 28.
    Bourbigot S, Duquesne S. Fire retardant polymers: recent developments and opportunities. J Mater Chem. 2007;17:2283–300.CrossRefGoogle Scholar
  29. 29.
    Tang G, Zhang R, Wang X, Wang BB, Song L, Hu Y, Gong XL. Enhancement of flame retardant performance of bio-based polylactic acid composites with the incorporation of aluminum hypophosphite and expanded graphite. J Macromol Sci A. 2013;50:255–69.CrossRefGoogle Scholar
  30. 30.
    Liu L, Liu JL, Chen XL, Jiao CM. Synergistic effect between hollow glass beads and aluminium hydroxide in flame retardant EVA composites. Plast Rubber Compos. 2014;43:77–81.CrossRefGoogle Scholar
  31. 31.
    He SQ, Hu Y, Song L, Tang Y. Fire safety assessment of halogen-free flame retardant polypropylene based on cone calorimeter. J Fire Sci. 2007;25:109–19.CrossRefGoogle Scholar
  32. 32.
    Kong QH, Hu Y, Song L, Tang YW. Kinetics of thermo-oxidative degradation of polypropylene/aluminum trihydroxide/organo Fe-montmorillonite nanocomposites. J Therm Anal Calorim. 2011;104:1145–51.CrossRefGoogle Scholar
  33. 33.
    Lenza J, Merkel K, Rydarowski H. Comparison of the effect of montmorillonite, magnesium hydroxide and a mixture of both on the flammability properties and mechanism of char formation of HDPE composites. Polym Degrad Stab. 2012;97:2581–93.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments & School of Mechanical EngineeringSoutheast UniversityNanjingPeople’s Republic of China
  2. 2.School of the Environment and Safety EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  3. 3.State Key Laboratory of Fire ScienceUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  4. 4.School of Environmental and Chemical EngineeringJiangsu University of Science and TechnologyZhenjiangPeople’s Republic of China

Personalised recommendations