Journal of Thermal Analysis and Calorimetry

, Volume 124, Issue 2, pp 847–855 | Cite as

Tetranuclear dioxomolybdenum (VI) cluster anion, hydrogen bond interaction with 1,2-di(4-pyridyl)ethylene

Crystal structure and electrochemical measurement
  • Samir Alghool
  • Carla Slebodnick


Tetranuclear dioxomolybdenum cluster complex (TMC) [C12H11N2 +]2[Mo4O10(OCH3) 6 2− ]·CH3OH has been synthesized by the reaction of MoO2(acac)2 with 1,2-di(4-pyridyl)ethylene. The cluster core is composed of four molybdenum atoms arranged in the rhombus shape bridged by two oxo ligands, one bridging O, and three methanol molecules. The TMC [C12H11N2 +]2[Mo4O10(OCH3) 6 2− ]·CH3OH is comprised of two moieties of pyridyl cation [C12H11N2 +]2 (1,2-di(4-pyridyl)ethylene) and cluster anion [Mo4O10(OCH3) 6 2− ]. The cluster is stabilized by two intermolecular interactions (hydrogen bond and ππ stacking interactions). The 1D chain is formed as a result of the hydrogen interaction between (1, 2-di(4-pyridyl)ethylene) and [Mo4O10(OCH3) 6 2− ]. Thermogravimetric analysis clearly indicated the thermal stability of the cluster. Electrochemical measurement showed two irreversible reduction processes at scan rates (−1 to −2 V) and an irreversible one-electron oxidation at +0.79 V. Optical absorption measurement shows that the fundamental absorption edge obeys Tauc’s relation for the allowed non-direct transition. Optical band gap (E g) values equal 2.4 eV.


Molybdenum Cluster Electrochemical measurement Band gap Thermal stability 



Acknowledgment is made to Prof. Mohamed Hesham, inorganic chemistry, Taif University, for his supporting and his advice and for Dr. Jessica D. Knoll (Prof Karen J. Brewer’s group) for her helping in electrochemical measurements.

Supplementary material

10973_2015_5211_MOESM1_ESM.pdf (808 kb)
Supplementary material 1 (PDF 809 kb)
10973_2015_5211_MOESM2_ESM.pdf (148 kb)
Supplementary material 2 (PDF 147 kb)
10973_2015_5211_MOESM3_ESM.cif (19 kb)
Supplementary material 3 (CIF 19 kb)


  1. 1.
    Zhao Y-X, Wu X-N, Ma J-B, He S-G, Ding X-L. Characterization and reactivity of oxygen-centred radicals over transition metal oxide clusters. Phys Chem Chem Phys. 2011;13:1925–38.CrossRefGoogle Scholar
  2. 2.
    Cabeza JA, García-Álvarez P. The N-heterocyclic carbene chemistry of transition-metal carbonyl clusters. Chem Soc Rev. 2011;40:5389–405.CrossRefGoogle Scholar
  3. 3.
    Thompson LK, Dawe LN. Magnetic properties of transition metal (Mn(II), Mn(III), Fe(II), Fe(III), Ni (II), Cu (II)) and lanthanide (Gd(III), Dy(III)) clusters and [nxn] grids; isotropic exchange and SMM behavior. Coord Chem Rev. 2015;289:13–31.CrossRefGoogle Scholar
  4. 4.
    Zoberbier T, Chamberlain TW, Biskupek J, Kuganathan N, Eyhusen S, Bichoutskaia E, et al. Interactions and reactions of transition metal clusters with the interior of single-walled carbon nanotubes imaged at the atomic scale. J Am Chem Soc. 2012;134:3073–9.CrossRefGoogle Scholar
  5. 5.
    Abe M, Michi T, Sato A, Kondo T, Zhou W, Ye S, et al. Electrochemically controlled layer-by-layer deposition of metal-cluster molecular multilayers on gold. Angew Chem Int Ed. 2003;42:2912–5.CrossRefGoogle Scholar
  6. 6.
    Gao C-Y, Zhao L, Wang M-X. Designed synthesis of metal cluster-centered pseudo-rotaxane supramolecular architectures. J Am Chem Soc. 2011;133:8448–51.CrossRefGoogle Scholar
  7. 7.
    Gatteschi D, Pardi L, Barra A, Müller A, Döring J. Layered magnetic structure of a metal cluster ion. Nature. 1991;354:463–5.CrossRefGoogle Scholar
  8. 8.
    Mathur P, Chakrabarty D, Hossain MM, Rashid RS, Rugmini V, Rheingold AL. Synthesis and characterization of the new mixed-metal cluster complexes [Fe2 M (. mu. 3-E) 2 (CO) 10](M = W, E = Se, Te; M = Mo, E = Se). Crystal structure of [Fe2 W (. mu. 3-Te) 2 (CO) 10]. Inorg Chem. 1992;31:1106–8.CrossRefGoogle Scholar
  9. 9.
    Chandrasekhar V, Bag P, Speldrich M, van Leusen J, Kögerler P. Synthesis, structure, and magnetic properties of a new family of tetra-nuclear {Mn2IIILn2}(Ln = Dy, Gd, Tb, Ho) clusters with an arch-type topology: single-molecule magnetism behavior in the dysprosium and terbium analogues. Inorg Chem. 2013;52:5035–44.CrossRefGoogle Scholar
  10. 10.
    Chu H-A, Nguyen AP, Debus RJ. Site-directed photosystem II mutants with perturbed oxygen-evolving properties. 1. Instability or inefficient assembly of the manganese cluster in vivo. Biochem. 1994;33:6137–49.CrossRefGoogle Scholar
  11. 11.
    Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J Am Chem Soc. 2008;130:5883–5.CrossRefGoogle Scholar
  12. 12.
    Alexandropoulos DI, Fournet A, Cunha-Silva L, Mowson AM, Bekiari V, Christou G, et al. Fluorescent naphthalene diols as bridging ligands in LnIII cluster chemistry: synthetic, structural, magnetic, and photophysical characterization of LnIII8 “Christmas Stars”. Inorg Chem. 2014;53:5420–2.CrossRefGoogle Scholar
  13. 13.
    Siu SK-L, Ko C-C, Au VK-M, Yam VW-W. Synthesis, characterization and photophysical studies of luminescent dinuclear and trinuclear copper (I) alkynyl phosphines. J Clust Sci. 2014;25:287–300.CrossRefGoogle Scholar
  14. 14.
    Li D-S, Zhao J, Wu Y-P, Liu B, Bai L, Zou K, et al. Co5/Co8–Cluster-based coordination polymers showing high-connected self-penetrating networks: syntheses, crystal structures, and magnetic properties. Inorg Chem. 2013;52:8091–8.CrossRefGoogle Scholar
  15. 15.
    Ungur L, Thewissen M, Costes J-P, Wernsdorfer W, Chibotaru LF. Interplay of strongly anisotropic metal ions in magnetic blocking of complexes. Inorg Chem. 2013;52:6328–37.CrossRefGoogle Scholar
  16. 16.
    Castleman A Jr. Cluster structure and reactions: gaining insights into catalytic processes. Catal Lett. 2011;141:1243–53.CrossRefGoogle Scholar
  17. 17.
    Li Y, Liu JH-C, Witham CA, Huang W, Marcus MA, Fakra SC, et al. A Pt-cluster-based heterogeneous catalyst for homogeneous catalytic reactions: X-ray absorption spectroscopy and reaction kinetic studies of their activity and stability against leaching. J Am Chem Soc. 2011;133:13527–33.CrossRefGoogle Scholar
  18. 18.
    Wang Y-G, Yoon Y, Glezakou V-A, Li J, Rousseau R. The role of reducible oxide-metal cluster charge transfer in catalytic processes: new insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics. J Am Chem Soc. 2013;135:10673–83.CrossRefGoogle Scholar
  19. 19.
    Shan X-C, Jiang F-L, Yuan D-Q, Zhang H-B, Wu M-Y, Chen L, et al. A multi-metal-cluster MOF with Cu4I4 and Cu6S6 as functional groups exhibiting dual emission with both thermochromic and near-IR character. Chem Sci. 2013;4:1484–9.CrossRefGoogle Scholar
  20. 20.
    Wang M-X. Nitrogen and oxygen bridged calixaromatics: synthesis, structure, functionalization, and molecular recognition. Acc Chem Res. 2011;45:182–95.CrossRefGoogle Scholar
  21. 21.
    Han N, Wang F, Hou JJ, Yip SP, Lin H, Xiu F, et al. Tunable electronic transport properties of metal-cluster-decorated III–V nanowire transistors. Adv Mater. 2013;25:4445–51.CrossRefGoogle Scholar
  22. 22.
    Lu Y, Chen W. Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem Soc Rev. 2012;41:3594–623.CrossRefGoogle Scholar
  23. 23.
    Weiss CJ, Groves AN, Mock MT, Dougherty WG, Kassel WS, Helm ML, Bullock RM. Synthesis and reactivity of molybdenum and tungsten bis (dinitrogen) complexes supported by diphosphine chelates containing pendant amines. Dalton Trans. 2012;41(15):4517–29.CrossRefGoogle Scholar
  24. 24.
    Holm RH, Solomon EI, Majumdar A, Tenderholt A. Comparative molecular chemistry of molybdenum and tungsten and its relation to hydroxylase and oxotransferase enzymes. Coord Chem Rev. 2011;255:993–1015.CrossRefGoogle Scholar
  25. 25.
    Jones S, Aldous A, Burkholder E, Zubieta J. Coordination chemistry of molybdenum oxides: construction of bimetallic organic–inorganic hybrid materials from Keggin clusters and copper-imine building blocks. Polyhedron. 2013;52:582–90.CrossRefGoogle Scholar
  26. 26.
    Brown-Xu SE, Chisholm MH, Durr CB, Lewis SA, Spilker TF, Young PJ. Molybdenum–molybdenum quadruple bonds supported by 9, 10-anthraquinone carboxylate ligands. Molecular, electronic, ground state and unusual photoexcited state properties. Chem Sci. 2014;5:2657–66.CrossRefGoogle Scholar
  27. 27.
    Zhao Y, Feng X, Xie Y, King RB, Schaefer H III. Molybdenum-molybdenum multiple bonding in homoleptic molybdenum carbonyls: comparison with their chromium analogues. J Phys Chem A. 2012;116:5698–706.CrossRefGoogle Scholar
  28. 28.
    Perez-Romo P, Potvin C, Manoli J-M, Chehimi M, Djéga-Mariadassou G. Phosphorus-doped molybdenum oxynitrides and oxygen-modified molybdenum carbides: synthesis, characterization, and determination of turnover rates for propene hydrogenation. J Catal. 2002;208:187–96.CrossRefGoogle Scholar
  29. 29.
    Quincy RB, Houalla M, Proctor A, Hercules DM. Distribution of molybdenum oxidation states in reduced molybdenum/titania catalysts: correlation with benzene hydrogenation activity. J Phys Chem. 1990;94:1520–6.CrossRefGoogle Scholar
  30. 30.
    Amini M, Haghdoost MM, Bagherzadeh M. Oxido-peroxido molybdenum (VI) complexes in catalytic and stoichiometric oxidations. Coord Chem Rev. 2013;257:1093–121.CrossRefGoogle Scholar
  31. 31.
    Wang C, Haeffner F, Schrock RR, Hoveyda AH. Molybdenum-based complexes with two aryloxides and a pentafluoroimido ligand: catalysts for efficient Z-selective synthesis of a macrocyclic trisubstituted alkene by ring-closing metathesis. Angew Chem Int Ed. 2013;52:1939–43.CrossRefGoogle Scholar
  32. 32.
    Houston JR, Burton AJ. Solvent dependent mechanistic pathways for η-O2CCH3 substitution from the [Mo3 (μ3-O) 2 (μ-O2CCH3) 6 (η-O2CCH3) 3] anion. Inorg Chim Acta. 2013;407:210–5.CrossRefGoogle Scholar
  33. 33.
    Marr SB, Carvel RO, Richens DT, Lee H-J, Lane M, Stavropoulos P. Comparison between iron and ruthenium reagents mediating GifIV-type oxygenation of cyclohexane. Inorg Chem. 2000;39:4630–8.CrossRefGoogle Scholar
  34. 34.
    Novitchi G, Riblet F, Scopelliti R, Helm L, Gulea A, Merbach AE. Mechanism of pyridine–ligand exchanges at the different labile sites of 3d heterometallic and mixed valence μ3-oxo trinuclear clusters. Inorg Chem. 2008;47:10587–99.CrossRefGoogle Scholar
  35. 35.
    Powell G, Richens DT. Redox chemistry of the acetato-bridged clusters [M3 (µ3-O) n (µ-O2CCH3) 6 (H2O) 3] 2 + (M = Mo, W, n = 1, 2): reversible redox between mono-µ3-oxo d8 MIII2MIV and d9 MIII3 forms. Dalton Trans. 2006;24:2959–63.CrossRefGoogle Scholar
  36. 36.
    Kirakci K, Kubát P, Dušek M, Fejfarová K, Šícha V, Mosinger J, et al. A highly luminescent hexanuclear molybdenum cluster—a promising candidate toward photoactive materials. Eur J Inorg Chem. 2012;2012:3107–11.CrossRefGoogle Scholar
  37. 37.
    Kirakci K, Kubát P, Langmaier J, Polívka T, Fuciman M, Fejfarová K, et al. A comparative study of the redox and excited state properties of (n Bu 4 N) 2 [Mo 6 X 14] and (n Bu 4 N) 2 [Mo 6 X 8 (CF 3 COO) 6](X = Cl, Br, or I). Dalton Trans. 2013;42:7224–32.CrossRefGoogle Scholar
  38. 38.
    Kirakci K, Fejfarová K, Kučeráková M, Lang K. Hexamolybdenum cluster complexes with pyrene and anthracene carboxylates: ultrabright red emitters with the antenna effect. Eur J Inorg Chem. 2014;2014:2331–6.CrossRefGoogle Scholar
  39. 39.
    CrysAlisPro Software system, v1.171.35.11 ed. Oxford, UK: Agilent Technologies UK Ltd; 2011.Google Scholar
  40. 40.
    Sheldrick GM. A short history of SHELX. Acta Crystallogr Sect A: Found Crystallogr. 2007;64:112–22.CrossRefGoogle Scholar
  41. 41.
    Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA, Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr. 2009;42:339–41.CrossRefGoogle Scholar
  42. 42.
    Ebrahimipour SY, Khabazadeh H, Castro J, Sheikhshoaie I, Crochet A, Fromm KM. cis-Dioxido-molybdenum (VI) complexes of tridentate ONO hydrazone Schiff base: synthesis, characterization, X-ray crystal structure, DFT calculation and catalytic activity. Inorg Chim Acta. 2015;427:52–61.CrossRefGoogle Scholar
  43. 43.
    Alghool S, Slebodnick C. Supramolecular structures of mononuclear and dinuclear dioxomolybdenum (VI) complexes via hydrogen bonds and π–π stacking, thermal studies and electrochemical measurements. Polyhedron. 2014;67:11–8.CrossRefGoogle Scholar
  44. 44.
    Alghool S, Slebodnick C, Karpin G. Supramolecular structure of Cu (II) and Zn (II) complexes based on 2, 2′: 6′, 2″-terpyridine, thermal and biological studies. J Therm Anal Calorim. 2015;119:1171–82.CrossRefGoogle Scholar
  45. 45.
    Davis E, Mott N. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos Mag. 1970;22:0903–22.CrossRefGoogle Scholar
  46. 46.
    Alghool S, El-Halim HFA, Dahshan A. Synthesis, spectroscopic thermal and biological activity studies on azo-containing Schiff base dye and its Cobalt (II), Chromium (III) and Strontium (II) complexes. J Mol Struct. 2010;983:32–8.CrossRefGoogle Scholar
  47. 47.
    Qu Z-K, Yu K, Zhao Z-F, Z-h Su, Sha J-Q, Wang C-M, et al. An organic–inorganic hybrid semiconductor material based on Lindqvist polyoxomolybdate and a tetra-nuclear copper complex containing two different ligands. Dalton Trans. 2014;43:6744–51.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of SciencePort Said UniversityPort SaidEgypt
  2. 2.Department of Chemistry, Faculty of ScienceTaif UniversityTa’ifKSA
  3. 3.Department of ChemistryVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations