Journal of Thermal Analysis and Calorimetry

, Volume 124, Issue 2, pp 629–638 | Cite as

The influence of pH buffers on hydration of hydraulic phases in system CaO–Al2O3

  • František Šoukal
  • Jan Koplík
  • Petr Ptáček
  • Tomáš Opravil
  • Jaromír Havlica
  • Martin T. Palou
  • Lukáš Kalina


The present paper deals with the study of pH buffer influence (pH + ions) on hydration course of tricalcium aluminate (C3A), monocalcium aluminate (CA), monocalcium di-aluminate (CA2) and dodecacalcium hepta-aluminate (C12A7). These calcium aluminate phases were synthesized at 1450 °C (CA and C3A), 1600 °C (CA2) and 1360 °C (C12A7), respectively. The purity of synthesized products was controlled by X-ray diffraction (XRD). Then, different calcium aluminate phases were hydrated at 25 °C in excess of water at pH 6 and with buffers to keep the pH values at 9, 11 and 13. The evolution of hydration heat was monitored by isothermal calorimetry for 48 h. After this period, hydration was stopped and the products were cross-characterized with different techniques: XRD, high-temperature X-ray diffraction, combined differential thermal analysis–thermogravimetry–effluent gas analysis. It was found out that the hydration course and the nature of hydration products of different calcium aluminate phases are strongly dependent on the hydration environment (pH + ions).


Calcium aluminate cement Ca3Al2O6 Hydration pH Hydration products 



The work has been supported by grant project no. GA13-41018S financed by Czech Science Foundation and by project Materials Research Centre at FCH BUT—Sustainability and Development, REG LO1211, with financial support from National Programme for Sustainability I (Ministry of Education, Youth and Sports of Czech Republic).


  1. 1.
    Pollmann H. Mineralogy and crystal chemistry of calcium aluminate cement. Calcium Alum Cem. 2001;2001:79–119.Google Scholar
  2. 2.
    Scrivener KL, Cabiron JL, Letourneux R. High-performance concretes from calcium aluminate cements. Cem Concr Res. 1999;29:1215–23.CrossRefGoogle Scholar
  3. 3.
    Bensted J. Calcium aluminate cements. In: Bensted J, Barnes P, editors. Structure and performance of cements. 2nd ed. London: Spon Press; 2002.Google Scholar
  4. 4.
    Šoukal F, Brandštetr J, Havlica J. Macrodefect-free (MDF) cementy—review. Silika. 2007; 17:45–50.Google Scholar
  5. 5.
    Bensted J. High-alumina cement—present state of knowledge. Zem-Kalk-Gips. 1993;46:560–6.Google Scholar
  6. 6.
    Terzic A, Obradovic N, Andric L, Stojanovic J, Pavlovic V. Investigation of thermally induced process in corundum refractory concretes with addition of fly ash. J Therm Anal Calorim. 2015;119:1339–52.CrossRefGoogle Scholar
  7. 7.
    Xu L, Wang P, Zhang G. Calorimetric study on the influence of calcium sulfate on the hydration of Portland cement–calcium aluminate cement mixtures. J Therm Anal Calorim. 2012;110:725–31.CrossRefGoogle Scholar
  8. 8.
    Scrivener KL, Capmas A. 13—calcium aluminate cements. In: Hewlett PC, editor. Lea’s chemistry of cement and concrete. 4th ed. Oxford: Butterworth-Heinemann; 2003.Google Scholar
  9. 9.
    Scrivener KL. 2—calcium aluminate cements. In: Choo JNSCS, editor. Advanced concrete technology set. Oxford: Butterworth-Heinemann; 2003.Google Scholar
  10. 10.
    Bullard JW, Jennings HM, Livingston RA, Nonat A, Scherer GW, Schweitzer JS, Scrivener KL, Thomas JJ. Mechanisms of cement hydration. Cem Concr Res. 2011;41:1208–23.CrossRefGoogle Scholar
  11. 11.
    Quennoz A, Scrivener KL. Interactions between alite and C3A-gypsum hydrations in model cements. Cem Concr Res. 2013;44:46–54.CrossRefGoogle Scholar
  12. 12.
    Black L, Breen C, Yarwood J, Deng CS, Phipps J, Maitland G. Hydration of tricalcium aluminate (C(3)A) in the presence and absence of gypsum—studied by Raman spectroscopy and X-ray diffraction. J Mater Chem. 2006;16:1263–72.CrossRefGoogle Scholar
  13. 13.
    Bohac M, Palou M, Novotny R, Masilko J, Vsiansky D, Stanek T. Investigation on early hydration of ternary Portland cement-blast-furnace slag-metakaolin blends. Constr Build Mater. 2014;64:333–41.CrossRefGoogle Scholar
  14. 14.
    Meredith P, Donald AM, Meller N, Hall C. Tricalcium aluminate hydration: microstructural observations by in situ electron microscopy. J Mater Sci. 2004;39:997–1005.CrossRefGoogle Scholar
  15. 15.
    Liu S, Wang L, Gao Y, Yu B, Bai Y. Comparing study on hydration properties of various cementious systems. J Therm Anal Calorim. 2014;118:1483–92.CrossRefGoogle Scholar
  16. 16.
    Gawlicki M, Nocun-Wczelik W, Bak L. Calorimetry in the studies of cement hydration. J Therm Anal Calorim. 2010;100:571–6.CrossRefGoogle Scholar
  17. 17.
    Xu L, Wang P, Zhang G. Formation of ettringite in Portland cement/calcium aluminate cement/calcium sulfate ternary system hydrates at lower temperatures. Constr Build Mater. 2012;31:347–52.CrossRefGoogle Scholar
  18. 18.
    Pacewska B, Nowacka M. Studies of conversion progress of calcium aluminate cement hydrates by thermal analysis method. J Therm Anal Calorim. 2014;117:653–60.CrossRefGoogle Scholar
  19. 19.
    Torréns-Martín D, Fernandéz-Carrasco L, Blanco-Varela MT. Thermal analysis of blended cements. J Therm Anal Calorim. 2015;121:1197–204.CrossRefGoogle Scholar
  20. 20.
    Chotard T, Gimet-Breart N, Smith A, Fargeot D, Bonnet JP, Gault C. Application of ultrasonic testing to describe the hydration of calcium aluminate cement at the early age. Cem Concr Res. 2001;31:405–12.CrossRefGoogle Scholar
  21. 21.
    Chotard TJ, Boncoeur-Martel MP, Smith A, Dupuy JP, Gault C. Application of X-ray computed tomography to characterise the early hydration of calcium aluminate cement. Cem Concr Comp. 2003;25:145–52.CrossRefGoogle Scholar
  22. 22.
    Chotard TJ, Smith A, Boncoeur MP, Fargeot D, Gault C. Characterisation of early stage calcium aluminate cement hydration by combination of non-destructive techniques: acoustic emission and X-ray tomography. J Eur Ceram Soc. 2003;23:2211–23.CrossRefGoogle Scholar
  23. 23.
    Chotard TJ, Smith A, Rotureau D, Fargeot D, Gault C. Acoustic emission characterisation of calcium aluminate cement hydration at an early stage. J Eur Ceram Soc. 2003;23:387–98.CrossRefGoogle Scholar
  24. 24.
    Kudryavtsev AB, Kouznetsova TV, Linert W, Hunter G. A study of the hydration of aluminate minerals based on the measurements of the mean and the variance of the proton magnetic resonance relaxation rate. Chem Phys. 1997;215:419–27.CrossRefGoogle Scholar
  25. 25.
    Kalina L, Másilko J, Koplík J, Šoukal F. XPS characterization of polymer-monocalcium aluminate interface. Cem Concr Res. 2014;66:110–4.CrossRefGoogle Scholar
  26. 26.
    Garces P, Alcocel EG, Chinchon S, Andreu CG, Alcaide J. Effect of curing temperature in some hydration characteristics of calcium aluminate cement compared with those of Portland cement. Cem Concr Res. 1997;27:1343–55.CrossRefGoogle Scholar
  27. 27.
    Georgescu M, Badanoiu A. The silica fume and temperature influence on the hydration and hardening processes of 12CaO center dot 7Al(2)O(3). Rev Roum Chim. 1999;44:25–30.Google Scholar
  28. 28.
    Gessner W, Moehmel S. Recent researches on calcium aluminate hydration. Calcium Aluminate Cem. 2001;2001:151–4.Google Scholar
  29. 29.
    Goske J, Pollmann H, Pankau HG. Hydration of high alumina cement investigations with low temperature SEM (cryo-technique). Calcium Aluminate Cem. 2001;2001:189–96.Google Scholar
  30. 30.
    Christensen AN, Jensen TR, Scarlett NVY, Madsen IC. Hydrolysis of pure and sodium substituted calcium aluminates and cement clinker components investigated by in situ synchrotron X-ray powder diffraction. J Am Ceram Soc. 2004;87:1488–93.CrossRefGoogle Scholar
  31. 31.
    Jensen TR, Christensen AN, Hanson JC. Hydrothermal transformation of the calcium aluminum oxide hydrates CaAl2O4 center dot 10H(2)O and Ca2Al2O5 center dot 8H(2)O to Ca3Al2(OH)(12) investigated by in situ synchrotron X-ray powder diffraction. Cem Concr Res. 2005;35:2300–9.CrossRefGoogle Scholar
  32. 32.
    Smith A, Chotard T, Gimet-Breart N, Fargeot D. Ultrasonic measurements as an in situ tool for characterising the ageing of an aluminous cement at different temperatures. J Eur Ceram Soc. 2002;22:2261–8.CrossRefGoogle Scholar
  33. 33.
    Smith A, Chotard T, Gimet-Breart N, Fargeot F. Correlation between hydration mechanism and ultrasonic measurements in an aluminous cement: effect of setting time and temperature on the early hydration. J Eur Ceram Soc. 2002;22:1947–58.CrossRefGoogle Scholar
  34. 34.
    Ukrainczyk N, Matusinovic T. Thermal properties of hydrating calcium aluminate cement pastes. Cem Concr Res. 2010;40:128–36.CrossRefGoogle Scholar
  35. 35.
    Gosselin C, Gallucci E, Scrivener KL. Influence of self heating and Li2SO4 addition on the microstructural development of calcium aluminate cement. Cem Concr Res. 2010;40:1555–70.CrossRefGoogle Scholar
  36. 36.
    Gotz-Neunhoeffer F. Kinetics of the hydration of calcium aluminate cement with additives. Zkg Int. 2005;25:65–72.Google Scholar
  37. 37.
    Li SQ, Hu JH, Liu B. Characterization of modified hydraulic calcium aluminate. Mater Res Innov. 2009;13:35–40.CrossRefGoogle Scholar
  38. 38.
    Mohmel S, Gessner W. The influence of alumina reactivity on the hydration behaviour of mono calcium aluminate. Solid State Ionics. 1997;101:937–43.CrossRefGoogle Scholar
  39. 39.
    Pastor C, Fernandez-Jimenez A, Vazquez T, Palomo A. Calcium aluminate cement hydration in a high alkalinity environment. Mater Construct. 2009;59:21–34.Google Scholar
  40. 40.
    Ukrainczyk N, Matusinovic T, Kurajica S, Zimmermann B, Sipusic J. Dehydration of a layered double hydroxide—C(2)AH(8). Thermochim Acta. 2007;464:7–15.CrossRefGoogle Scholar
  41. 41.
    Guirado F, Gali S, Chinchon JS. Thermal decomposition of hydrated alumina cement (CAH(10)). Cem Concr Res. 1998;28:381–90.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • František Šoukal
    • 1
  • Jan Koplík
    • 1
  • Petr Ptáček
    • 1
  • Tomáš Opravil
    • 1
  • Jaromír Havlica
    • 1
  • Martin T. Palou
    • 1
  • Lukáš Kalina
    • 1
  1. 1.Faculty of Chemistry, Materials Research CentreBrno University of TechnologyBrnoCzech Republic

Personalised recommendations