Skip to main content
Log in

Crystallization and sintering behaviors of the polyphosphate glass doped with Zn and Mn

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The crystallization and sintering behaviors of polyphosphate glass doped with trace elements Zn and Mn were examined. The heating experiments on bulk and powder glass samples were performed. The parent glass revealed low crystallization ability and the glass crystallization carried out under simultaneous acting of the surface and volume mechanisms. The bulk glass sample isothermally heated at T c = 500 °C commences to crystallize after 12 h, and KPO3 and Ca2KP3O10 crystalline phases appeared. The dendritic morphology of the crystals growing on sample surface was determined. The DTA and HSM results showed that the sintering and crystallization processes are independent. Phosphate glass-ceramics containing KPO3, K2Mg(PO3)4, Ca(PO3)2 and KCa(PO3)3 crystalline phases has been prepared by sintering of the glass powder compacts at T c = 500 °C for t = 12 h. A plate-like morphology of crystals which grow on glass grains surface was observed. The activation energies of crystal growth, E a,k = (246.6 ± 19.74) kJ mol−1 (Kissinger) and E a,oz = (258.80 ± 19.70) kJ mol−1 (Ozawa), were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Antonio JS, Olga PC, Rui LR. Bone tissue engineering: state of the art and future trends. Macromol Biosci. 2004;4:743–65.

    Article  Google Scholar 

  2. Delia SB, Natalia K, Robert VL, Robert GH. Effect of TiO2 addition on structure, solubility and crystallisation of phosphate invert glasses for biomedical applications. J Non-Cryst Solids. 2010;356:2626–33.

    Article  Google Scholar 

  3. Dias AG, Lopes MA, Gibson IR, Santos JD. In vitro degradation studies of calcium phosphate glass ceramics prepared by controlled crystallization. J Non-Cryst Solids. 2003;330:81–9.

    Article  CAS  Google Scholar 

  4. Ahmed I, Lewis M, Olsen I, Knowles JC. Phosphate glasses for tissue engineering: part 1. Processing and characterisation of a ternary based P2O5–CaO–Na2O glass system. Biomaterials. 2004;25(3):491–9.

    Article  CAS  Google Scholar 

  5. Ensanya A, Abou N, David MP, Sabeel PV, Robert JN, Jonathan CK. Bioactive functional materials: a perspective on phosphate-based glasses. J Mater Chem. 2009;19:690–701.

    Article  Google Scholar 

  6. Richard KB. Review: the structure of simple phosphate glasses. J Non-Cryst Solids. 2000;263&264:1–28.

    Google Scholar 

  7. Walter G, Vogel J, Hoppe U, Hartmann P. The structure of CaO–Na2O–MgO–P2O5 invert glass. J Non-Cryst Solids. 2001;296:212–23.

    Article  CAS  Google Scholar 

  8. Mandlule A, Döhler F, Van Wüllen L, Kasuga T, Brauer DS. Changes in structure and thermal properties with phosphate content of ternary calcium sodium phosphate glasses. J Non-Cryst Solids. 2007;353:263–70.

    Article  Google Scholar 

  9. Mourino V, Cattalini JP, Boccaccini AR. Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R Soc Interface. 2012;9:401–19.

    Article  CAS  Google Scholar 

  10. Ito A, Kawamura H, Otsuka M, et al. Zinc-releasing calcium phosphate for stimulating bone formation. Mater Sci Eng C. 2002;22:21–5.

    Article  Google Scholar 

  11. Ni G, Chiu K, Lu W, et al. Strontium-containing hydroxyapatite bioactive bone cement in revision hip arthroplasty. Biomaterials. 2006;27:4348–55.

    Article  CAS  Google Scholar 

  12. Wu C, Zhou Y, Xu M, et al. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials. 2013;34:422–33.

    Article  CAS  Google Scholar 

  13. Wers E, Oudadesse H. Thermal behaviour and excess entropy of bioactive glasses and Zn-doped glasses. J Therm Anal Calorim. 2014;115:2137–44.

    Article  CAS  Google Scholar 

  14. Luthen F, Bulnheim U, Muller PD, et al. Influence of manganese ions on cellular behavior of human osteoblasts in vitro. Biomol Eng. 2007;24:531–6.

    Article  Google Scholar 

  15. Kasuga T, Sawada M, Nogami M, Abe Y. Bioactive ceramics prepared by sintering and crystallization of calcium phosphate invert glasses. Biomaterials. 1999;20:1415–20.

    Article  CAS  Google Scholar 

  16. Kasuga T, Abe Y. Novel calcium phosphate ceramics prepared by powder sintering and crystallization of glasses in the pyrophosphate region. J Mater Res. 1998;13:3357–60.

    Article  CAS  Google Scholar 

  17. Clark T, Reed JS. Kinetic processes involved in the sintering and crystallization of glass powders. J Am Ceram Soc. 1986;69(11):837–46.

    Article  CAS  Google Scholar 

  18. Siligardi C, D’Arrigo MC, Leonelli C. Sintering behaviour of glass-ceramic frits. Am Ceram Soc Bull. 2000;79(9):88–92.

    CAS  Google Scholar 

  19. Sonja VS, Snežana RG, Mihajlo BT, Vladimir DŽ, Jovica NS, Srdjan DM, Jelena DN. Crystallization and sinterability of glass-ceramics in the system La2O3–SrO–B2O3. Ceram Int. 2014;40(1):297–305.

    Article  Google Scholar 

  20. Lara C, Pascual MJ, Duran A. Glass-forming ability, sinterability and thermal properties in the systems RO–BaO–SiO2 (R = Mg, Zn). J Non-Cryst Solids. 2004;348:149–55.

    Article  CAS  Google Scholar 

  21. Vitale-Brovarone C, Miola M, Balagna C, Verné E. 3D-glass-ceramic scaffolds with antibacterial properties for bone grafting. Chem Eng J. 2008;137:129–36.

    Article  CAS  Google Scholar 

  22. Brovarone CV, Verne E, Appendino P. Macroporous bioactive glass-ceramic scaffolds for tissue engineering. J Mater Sci Mater Med. 2006;17:1069–78.

    Article  CAS  Google Scholar 

  23. Boccaccini AR, Chen Q, Lefebvre L, Gremillard L, Chevalier J. Sintering, crystallization and biodegradation behaviour of bioglass-derived glass-ceramics. Faraday Discuss. 2007;136:27–44.

    Article  CAS  Google Scholar 

  24. Chatzistavrou X, Zorba T, Chrissafis K, Kaimakamis G, Kontonasaki E, Koidis P, Paraskevopoulos KM. Influence of particle size on the crystallization process and the bioactive behaviour of a bioactive glass system. J Therm Anal Calorim. 2006;85:253–9.

    Article  CAS  Google Scholar 

  25. Dias AG, Tsuru K, Hayakawa T, Lopes MA, Santos JD, Osaka A. Crystallisation studies of biodegradable CaO–P2O5 glass with MgO and TiO2 for bone regeneration applications. Glass Technol. 2004;45(2):78–9.

    CAS  Google Scholar 

  26. Davim EJC, Senos AMR, Fernandes MHV. Non-isothermal crystallization kinetics of a Si–Ca–P–Mg bioactive glass. J Therm Anal Calorim. 2014;117:643–51.

    Article  CAS  Google Scholar 

  27. Hussin R, Abu Bakar NH, Nadhirah MN, Karim D, Shamsuri NW, Fazliana DN, Halim A, Husin MS, Hamdan S, Ahmad NE, Hashim IH, Bakar I. Short range structure of sodium calcium phosphate glass by Infrared and Raman spectroscopy. Solid State Sci Technol. 2011;19(2):128–36.

    CAS  Google Scholar 

  28. Nyquist RA. Handbook of infrared and Raman spectra of inorganic compounds and organics salts. London: Academic Press; 1997.

    Google Scholar 

  29. Moustafa YM, El-Egili K. Infrared spectra of sodium phosphate glasses. J Non-Cryst Solids. 1998;240:144–53.

    Article  CAS  Google Scholar 

  30. Fatma H, El-Batal. UV–visible, infrared, Raman and ESR spectra of gamma-irradiated TiO2-doped soda lime phosphate glasses. Indian J Pure Appl Phys. 2009;47:631–42.

    Google Scholar 

  31. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1959;29:1702–6.

    Article  Google Scholar 

  32. Matusita K, Sakka S. Kinetic study on crystallization of glass by differential thermal analysis—criterion on application of Kissinger plot. J Non-Cryst Solids. 1980;38–39:741–6.

    Article  Google Scholar 

  33. Ozawa T. A modified method for kinetic analysis of thermoanalytical data. J Therm Anal. 1976;9:369–73.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Ministry of Education, Science and Technological Development of the Republic of Serbia for financial support (Projects 34001 and 172004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena D. Nikolić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolić, J.D., Živanović, V.D., Matijašević, S.D. et al. Crystallization and sintering behaviors of the polyphosphate glass doped with Zn and Mn. J Therm Anal Calorim 124, 585–592 (2016). https://doi.org/10.1007/s10973-015-5184-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5184-x

Keywords

Navigation