Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 124, Issue 1, pp 539–546 | Cite as

Calorimetric study of calcium nitrate tetrahydrate and magnesium nitrate hexahydrate

  • Galina Sádovská
  • Pavla Honcová
  • Radim Pilař
  • Lucie Oravová
  • Daniel Honc
Article

Abstract

The heat capacity and enthalpy of fusion of calcium nitrate tetrahydrate and magnesium nitrate hexahydrate were determined from 234.15 K to melting temperature by DSC. The modified stepwise method was used for heat capacity measurement, and enthalpy of fusion was determined from continuous heating by the rate of 10 K min−1 (Pilař et al. in J Therm Anal Calorim 118:485–491, 2014). Determined values were used for the calculation of entropy and Gibbs energy in the experimental temperature range. Melting point and enthalpy of fusion of calcium nitrate tetrahydrate are 317.1 ± 0.3 K and 36.6 ± 0.2 kJ mol−1, and for the magnesium nitrate hexahydrate, the values are 362.9 ± 0.4 K and 40.8 ± 0.5 kJ mol−1. One solid–solid phase transformation was observed for the magnesium salt at 345.7 ± 0.9 K with enthalpy of transition 3.1 ± 0.2 kJ mol−1. The available accumulated energy composed of sensible (heating) and latent heat (phase transformations) is 43.4 and 63.8 kJ mol−1 for the hydrated calcium and magnesium nitrate, respectively. The kinetics of solid–solid phase transformation for magnesium salt was studied under non-isothermal conditions by DSC, and the process was described using autocatalytical model with parameters in the range of 0.50–0.85 for m and range of 2.58–1.48 for n, respectively.

Keywords

Calcium nitrate tetrahydrate Magnesium nitrate hexahydrate Heat capacity Phase change materials Kinetics Autocatalytical model 

Supplementary material

10973_2015_5159_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 22 kb)

References

  1. 1.
    Pilař R, Honcová P, Košťál P, Sádovská G, Svoboda L. Modified stepwise method for determining heat capacity by DSC. J Therm Anal Calorim. 2014;118:485–91.CrossRefGoogle Scholar
  2. 2.
    Lorsch GH, Kauffman KW, Dentons JC. Thermal energy storage for solar heating and off-peak air conditioning. Energy Convers. 1975;15:1–8.CrossRefGoogle Scholar
  3. 3.
    Zalba B, Marín JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Thermal Eng. 2003;23:251–83.CrossRefGoogle Scholar
  4. 4.
    Voigt W, Zeng D. Solid-liquid equilibria in mixtures of molten salt hydrates for the design of heat storage materials. Pure Appl Chem. 2002;74:1909–20.CrossRefGoogle Scholar
  5. 5.
    Angell CA, Tucker JC. Heat capacities and fusion entropies of the tetrahydrates of calcium nitrate, cadmium nitrate, and magnesium acetate. Concordance of calorimetric and relaxational “ideal” glass transition temperatures. J Phys Chem. 1974;78:278–81.CrossRefGoogle Scholar
  6. 6.
    Guion J, Sauzade JD, Laügt M. Critical examination and experimental determination of melting enthalpies and entropies of salt hydrates. Thermochim Acta. 1983;67:167–79.CrossRefGoogle Scholar
  7. 7.
    Naumann R, Emons HH. Results of thermal analysis for investigation of salt hydrates as latent heat-storage materials. J Thermal Anal. 1989;35:1009–31.CrossRefGoogle Scholar
  8. 8.
    Xu Y, Hepler GL. Calorimetric investigations of crystalline, molten, and supercooled Ca(NO3)2·4H2O and of concentrated Ca(NO3)2 (aq). J Chem Thermodyn. 1993;25:91–7.CrossRefGoogle Scholar
  9. 9.
    Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials. Renew Sustain Energy Rev. 2009;13:318–45.CrossRefGoogle Scholar
  10. 10.
    Nikolova D, Maneva M. Thermal investigations of nitrate-hydrates and deuterates of Ca2+, Cd2+ and Mg2+. J Therm Anal. 1995;44:869–75.CrossRefGoogle Scholar
  11. 11.
    Hattori T, Iwadate Y, Igarashi K, Kawamura K, Mochinaga J. Thermal characteristic of molten calcium nitrate tetrahydrate. Denki Kagaku. 1986;54:804–5.Google Scholar
  12. 12.
    Zhdanov VM, Shamova VA, Drakin SI. Heat capacity of crystal hydrates of magnesium, aluminum, calcium, nickel, and lanthanum nitrates and copper sulfate pentahydrate. Deposited Doc. VINITI. 1976;2874–76:1–10.Google Scholar
  13. 13.
    Cantor S. DSC study of melting and solidification of salt hydrates. Thermochim Acta. 1979;33:69–86.CrossRefGoogle Scholar
  14. 14.
    Naumann R, Emons HH, Köhnke K, Paulik J, Paulik F. Investigation on thermal behaviour of Mg(NO3)2·6H2O. J Therm Anal. 1988;34:1327–33.CrossRefGoogle Scholar
  15. 15.
    Riesenfeld EH, Milchsack C. Versuch einer Bestimmung des Hydratationsgrades von Salzen in koncentrierten Lösungen. Zeitschrift für anorganische Chemie. 1914;85:401–29.CrossRefGoogle Scholar
  16. 16.
    Demirbas MF. Thermal energy storage and phase change materials: an overview. Energy Source Part B. 2006;1:85–95.CrossRefGoogle Scholar
  17. 17.
    Nagano K, Ogawa K, Mochida T, Hayashi K, Ogoshi H. Thermal characteristics of magnesium nitrate hexahydrate and magnesium chloride hexahydrate mixture as a phase change material for effective utilization of urban waste heat. Appl Therm Eng. 2004;4:221–32.CrossRefGoogle Scholar
  18. 18.
    Pouillen P. Les transformations polymorphiques des cristaux de nitrates de métaux bivalents hexahydratés. CR Hebd Acad Sci. 1960;250:3318–9.Google Scholar
  19. 19.
    Šesták J. Thermophysical properties of solids, their measurements and theoretical analysis. Amsterdam: Elsevier; 1984.Google Scholar
  20. 20.
    Málek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta. 2000;355:239–53.CrossRefGoogle Scholar
  21. 21.
    Málek J, Mitsuhashi T, Criado JM. Kinetic analysis of solid-state processes. J Mater Res. 2001;16:1862–71.CrossRefGoogle Scholar
  22. 22.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  23. 23.
    Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2:301–24.CrossRefGoogle Scholar
  24. 24.
    Málek J. The kinetic-analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69.CrossRefGoogle Scholar
  25. 25.
    Málek J, Criado JM, Šesták J, Militký J. The boundary-conditions for kinetic-models. Thermochim Acta. 1989;153:429–32.CrossRefGoogle Scholar
  26. 26.
    Málek J, Klikorka J. Crystallization kinetics of glassy GeS2. J Therm Anal. 1987;32:1883–93.CrossRefGoogle Scholar
  27. 27.
    Yaws CL. Heat capacities of solids-elements and inorganic compounds. In: Yaws’ handbook of thermodynamic properties for hydrocarbons and chemicals. Knovel. 2009. http://app.knovel.com/hotlink/toc/id:kpYHTPHC09/yaws-handbook-thermodynamic/yaws-handbook-thermodynamic. Accessed 31 March 2009.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Galina Sádovská
    • 1
  • Pavla Honcová
    • 1
  • Radim Pilař
    • 1
  • Lucie Oravová
    • 1
  • Daniel Honc
    • 2
  1. 1.Department of Inorganic Technology, Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic
  2. 2.Department of Process Control, Faculty of Electrical Engineering and InformaticsUniversity of PardubicePardubiceCzech Republic

Personalised recommendations