Journal of Thermal Analysis and Calorimetry

, Volume 124, Issue 1, pp 295–303 | Cite as

Crystallization behavior for metallocene-catalyzed isotactic polypropylene in alkane solvents of various molecular sizes



Solution-grown lamellar crystallization of metallocene-catalyzed isotactic polypropylene (m-iPP) and non-isothermal crystallization kinetics of solid m-iPP recovered from alkanes of various molecular sizes have been investigated in this paper. Observation of the precipitated m-iPP by transmission electron microscopy and electron diffraction revealed that the m-iPP single crystals formed in middle-sized solvent. In addition, the sensitivity of crystallizing speed of m-iPP to cooling rates under non-isothermal crystallization process was evaluated. The results showed that m-iPP recovered from larger molecular size alkane solvent, such as n-decane and n-dodecane with the exception of n-hexadecane, was more sensitive to the change in cooling rates. And m-iPP recovered from n-decane exhibited a fastest rate of non-isothermal crystallization.


Isotactic polypropylene Single crystals Differential scanning calorimetry Crystallization rate 


  1. 1.
    Gahleitner M, Bachner C, Ratajski E, Rohaczek G, Neißl W. Effects of the catalyst system on the crystallization of polypropylene. J Appl Polym Sci. 1999;73(12):2507–15.CrossRefGoogle Scholar
  2. 2.
    Dai X, Zhang Z, Chen C, Li M, Tan Y, Mai K. Non-isothermal crystallization kinetics of montmorillonite filled β-isotactic polypropylene nanocomposites. J Therm Anal Calorim. 2015;121(2):829–38.CrossRefGoogle Scholar
  3. 3.
    Bond EB, Spruiell JE, Lin JS. A WAXD/SAXS/DSC study on the melting behavior of Ziegler–Natta and metallocene catalyzed isotactic polypropylene. J Polym Sci Polym Phys. 1999;37(21):3050–64.CrossRefGoogle Scholar
  4. 4.
    Kang J, He J, Chen Z, Yu H, Chen J, Yang F, Cao Y, Xiang M. Investigation on the crystallization behavior and polymorphic composition of isotactic polypropylene/multi-walled carbon nanotube composites nucleated with β-nucleating agent. J Therm Anal Calorim. 2014;119(3):1769–80.CrossRefGoogle Scholar
  5. 5.
    Varma-Nair M, Agarwal PK. Quiesent crystallization kinetics of nucleated metallocene and ZN isotactic polypropylenes. J Therm Anal Calorim. 2000;59(1–2):483–95.CrossRefGoogle Scholar
  6. 6.
    Fujiyama M, Inata H. Crystallization and melting characteristics of metallocene isotactic polypropylenes. J Appl Polym Sci. 2002;85(9):1851–7.CrossRefGoogle Scholar
  7. 7.
    Auriemma F, De Rosa C. Crystallization of metallocene-made isotactic polypropylene: disordered modifications intermediate between the α and γ forms. Macromolecules. 2002;35(24):9057–68.CrossRefGoogle Scholar
  8. 8.
    Alfonso G, Ziabicki A. Memory effects in isothermal crystallization II. Isotactic polypropylene. Colloid Polym Sci. 1995;273(4):317–23.CrossRefGoogle Scholar
  9. 9.
    Lamberti G. Isotactic polypropylene crystallization: analysis and modeling. Eur Polym J. 2011;47(5):1097–112.CrossRefGoogle Scholar
  10. 10.
    Boyer SAE, Robinson P, Ganet P, Melis JP, Haudin JM. Crystallization of polypropylene at high cooling rates: microscopic and calorimetric studies. J Appl Polym Sci. 2012;125(6):4219–32.CrossRefGoogle Scholar
  11. 11.
    van Drongelen M, van Erp TB, Peters GWM. Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene: the influence of cooling rate and pressure. Polymer. 2012;53(21):4758–69.CrossRefGoogle Scholar
  12. 12.
    Kocic N, Kretschmer K, Bastian M, Heidemeyer P. The influence of talc as a nucleation agent on the nonisothermal crystallization and morphology of isotactic polypropylene: the application of the Lauritzen–Hoffmann, Avrami, and Ozawa theories. J Appl Polym Sci. 2012;126(4):1207–17.CrossRefGoogle Scholar
  13. 13.
    Xiao Z, Sun Q, Xue G, Yuan Z, Dai Q, Hu Y. Thermal behavior of isotactic polypropylene freeze-extracted from solutions with varying concentrations. Eur Polym J. 2003;39(5):927–31.CrossRefGoogle Scholar
  14. 14.
    Li Y, Xue G. Rapid crystallization of isotactic polystyrene from large molecule solvent octadecyl benzoate. Macromolecules. 1999;32(12):3984–8.CrossRefGoogle Scholar
  15. 15.
    Xue G, Zhang J, Chen J, Li Y, Ma J, Wang G, et al. Gelation crystallization of isotactic polystyrene in solvents of varying molecular size. Macromolecules. 2000;33(7):2299–301.CrossRefGoogle Scholar
  16. 16.
    Andrews NC, Doufas AK, McHugh AJ. Effect of solvent quality on the rheological and rheooptical properties of flexible polymer solutions. Macromolecules. 1998;31(9):3104–8.CrossRefGoogle Scholar
  17. 17.
    Flory PJ. The configuration of real polymer chains. J Chem Phys. 1949;17(3):303–10.CrossRefGoogle Scholar
  18. 18.
    Cheng SZD, Li CY. Structure and formation of polymer single crystal textures. In: Proceedings of the 13th International Conference on Textures of Materials (ICOTOM 13), Seoul, Korea, 26–30 August 2002, pp. 25–38. Uetikon-Zurich, Switzerland: Trans Tech Publications.Google Scholar
  19. 19.
    Cheng SZD, Lotz B. Nucleation control in polymer crystallization: structural and morphological probes in different length- and time-scales for selection processes. Phil Trans R Soc A. 2003;361(1804):517–37.CrossRefGoogle Scholar
  20. 20.
    Goldbeck-Wood G. Polymer crystallization: simulation with entropic barrier model and application to specific polymers. Macromol Symp. 1994;81(1):221–34.CrossRefGoogle Scholar
  21. 21.
    Morrow DR, Sauer JA, Woodward AE. Dilute solution-grown polypropylene single crystals. J Polym Sci Polym Lett. 1965;3(6):463–6.CrossRefGoogle Scholar
  22. 22.
    Sauer JA, Morrow DR, Richardson GC. Morphology of solution-grown polypropylene crystal aggregates. J Appl Phys. 1965;36(10):3017–21.CrossRefGoogle Scholar
  23. 23.
    Wittmann JC, Lotz B. Polymer decoration: the orientation of polymer folds as revealed by the crystallization of polymer vapors. J Polym Sci Polym Phys. 1985;23(1):205–26.CrossRefGoogle Scholar
  24. 24.
    Kojima M. Solution-grown lamellar crystals of thermally decomposed isotactic polypropylene. J Polym Sci Polym Lett. 1967;5(3):245–50.CrossRefGoogle Scholar
  25. 25.
    Kojima M. Morphology of polypropylene crystals. I. Dilute solution-grown lamellar crystals. J Polym Sci Polym Phys. 1967;5(3):597–613.CrossRefGoogle Scholar
  26. 26.
    Kojima M. Morphology of polypropylene crystals. II. Twinning of lamellar crystals. J Polym Sci Polym Phys. 1967;5(3):615–22.CrossRefGoogle Scholar
  27. 27.
    Kojima M. Morphology of polypropylene crystals. III. Lamellar crystals of thermally decomposed polypropylene. J Polym Sci Polym Phys. 1968;6(7):1255–71.CrossRefGoogle Scholar
  28. 28.
    Kojima M. Annealing of polypropylene lamellar crystals. J Polym Sci Polym Phys. 1968;6(11):1938–42.CrossRefGoogle Scholar
  29. 29.
    Padden FJ, Keith HD. Crystallization in thin films of isotactic polypropylene. J Appl Phys. 1966;37(11):4013–20.CrossRefGoogle Scholar
  30. 30.
    Patel GN, Patel RD. Single crystals of high polymers by film formation. J Polym Sci Polym Phys. 1970;8(1):47–59.CrossRefGoogle Scholar
  31. 31.
    Lotz B, Graff S, Straupé C, Wittmann JC. Single crystals of γ phase isotactic polypropylene: combined diffraction and morphological support for a structure with non-parallel chains. Polymer. 1991;32(16):2902–10.CrossRefGoogle Scholar
  32. 32.
    Monasse B, Haudin JM. Thermal dependence of nucleation and growth rate in polypropylene by non isothermal calorimetry. Colloid Polym Sci. 1986;264(2):117–22.CrossRefGoogle Scholar
  33. 33.
    Di Lorenzo ML, Silvestre C. Non-isothermal crystallization of polymers. Prog Polym Sci. 1999;24(6):917–50.CrossRefGoogle Scholar
  34. 34.
    Nakamura K, Katayama K, Amano T. Some aspects of nonisothermal crystallization of polymers. II. Consideration of the isokinetic condition. J Appl Polym Sci. 1973;17(4):1031–41.CrossRefGoogle Scholar
  35. 35.
    Nakamura K, Katayama K, Amano T. Some aspects of nonisothermal crystallization of polymers. I. Relationship between crystallization temperature, crystallinity, and cooling conditions. J Appl Polym Sci. 1972;16(5):1077–91.CrossRefGoogle Scholar
  36. 36.
    Piccarolo S, Saiu M, Brucato V, Titomanlio G. Crystallization of polymer melts under fast cooling. II. High-purity iPP. J Appl Polym Sci. 1992;46(4):625–34.CrossRefGoogle Scholar
  37. 37.
    Brucato V, Crippa G, Piccarolo S, Titomanlio G. Crystallization of polymer melts under fast cooling. I: nucleated polyamide 6. Polym Eng Sci. 1991;31(19):1411–6.CrossRefGoogle Scholar
  38. 38.
    De Santis F, Adamovsky S, Titomanlio G, Schick C. Scanning nanocalorimetry at high cooling rate of isotactic polypropylene. Macromolecules. 2006;39(7):2562–7.CrossRefGoogle Scholar
  39. 39.
    Lamberti G, De Santis F, Brucato V, Titomanlio G. Modeling the interactions between light and crystallizing polymer during fast cooling. Appl Phys A Mater. 2004;78(6):895–901.CrossRefGoogle Scholar
  40. 40.
    Lamberti G, Naddeo C. Some issues on polymer crystallization kinetics studied by DSC non isothermal tests. Polym Bull. 2006;56(6):591–8.CrossRefGoogle Scholar
  41. 41.
    Lamberti G. Flow induced crystallisation of polymers. Chem Soc Rev. 2014;43(7):2240–52.CrossRefGoogle Scholar
  42. 42.
    Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12(3):150–8.CrossRefGoogle Scholar
  43. 43.
    Nadkarni VM, Bulakh NN, Jog JP. Assessing polymer crystallizability from nonisothermal crystallization behavior. Adv Polym Technol. 1993;12(1):73–9.CrossRefGoogle Scholar
  44. 44.
    Avrami M. Kinetics of phase change II transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8(2):212–24.CrossRefGoogle Scholar
  45. 45.
    López LC, Wilkes GL. Non-isothermal crystallization kinetics of poly(p-phenylene sulphide). Polymer. 1989;30(5):882–7.CrossRefGoogle Scholar
  46. 46.
    Wunderlich B. Macromolecular physics, vol. 2. New York: Academic Press; 1976.Google Scholar
  47. 47.
    Eder M, Wlochowicz A. Kinetics of non-isothermal crystallization of polyethylene and polypropylene. Polymer. 1983;24(12):1593–5.CrossRefGoogle Scholar
  48. 48.
    Guenet JM. Thermoreversible gelation of polymers and biopolymers. London: Academic Press; 1992.Google Scholar
  49. 49.
    Lee Y, Porter RS. Effects of thermal history on crystallization of poly(ether ether ketone) (PEEK). Macromolecules. 1988;21(9):2770–6.CrossRefGoogle Scholar
  50. 50.
    Blom HP, Teh JW, Bremner T, Rudin A. Isothermal and non-isothermal crystallization of PP: effect of annealing and of the addition of HDPE. Polymer. 1998;39(17):4011–22.CrossRefGoogle Scholar
  51. 51.
    Zhu X, Li Y, Yan D, Fang Y. Crystallization behavior of partially melting isotactic polypropylene. Polymer. 2001;42(22):9217–22.CrossRefGoogle Scholar
  52. 52.
    Brandrup J, Immergut EH. Polymer handbook. 4th ed. New York: Wiley; 1989.Google Scholar
  53. 53.
    Frenkel D. Entropy-driven phase transitions. Phys A. 1999;263(1–4):26–38.CrossRefGoogle Scholar
  54. 54.
    Dijkstra M, Frenkel D. Evidence for entropy-driven demixing in hard-core fluids. Phys Rev Lett. 1994;72(2):298–300.CrossRefGoogle Scholar
  55. 55.
    Dijkstra M, Frenkel D, Hansen J-P. Phase separation in binary hard-core mixtures. J Chem Phys. 1994;101(4):3179–89.CrossRefGoogle Scholar
  56. 56.
    Komorowski J, Bruns W. Influence of the solvent size on the behavior of model-polymers in solution. J Chem Phys. 1995;103(13):5756–61.CrossRefGoogle Scholar
  57. 57.
    Luna-Bárcenas G, Bennett GE, Sanchez IC, Johnston KP. Monte C. Simulation of polymer chain collapse in athermal solvents. J Chem Phys. 1996;104(24):9971–3.CrossRefGoogle Scholar
  58. 58.
    Suen JKC, Escobedo FA. Monte C. Simulation of polymer chain collapse in an athermal solvent. J Chem Phys. 1997;106(3):1288–90.CrossRefGoogle Scholar
  59. 59.
    Hh G, Bc E. Influence of the solvent on the conformation of a chain molecule. J Chem Phys. 1998;109(5):2011–22.CrossRefGoogle Scholar
  60. 60.
    Mendez S, Curro JG, Putz M, Bedrov D, Smith GD. An integral equation theory for polymer solutions: explicit inclusion of the solvent molecules. J Chem Phys. 2001;115(12):5669–78.CrossRefGoogle Scholar
  61. 61.
    Polson JM, Zuckermann MJ. Simulation of short-chain polymer collapse with an explicit solvent. J Chem Phys. 2002;116(16):7244–54.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.School of Chemical EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations