Journal of Thermal Analysis and Calorimetry

, Volume 125, Issue 2, pp 695–701 | Cite as

The crystallization kinetics of the MgO–Al2O3–SiO2–TiO2 glass ceramics system produced from industrial waste

  • Cansu Başaran
  • Nuray Canikoğlu
  • H. Özkan Toplan
  • Nil Toplan


The MgO–Al2O3–SiO2–TiO2 glass system was prepared by melting method. The crystallization behavior and crystallization kinetics of a sample with glass ceramic composition were examined. DTA and XRD analyses revealed the crystallization of Ca0.965Mg2Al16O27 cordierite (Mg2Al4Si5O18) and Fe2TiO5 phases. The activation energy for the crystallization of cordierite phase has been evaluated, and the crystallization mechanism has been studied by applying DTA measurements performed at various heating rates. The results indicate that the dominant crystallization mechanism for this system is bulk crystallization dominated by three-dimensional growth. The average calculated values of crystallization and viscous flow for the formation of crystal phases from the glass matrix were measured to be 410 and 390 kJ mol−1, respectively.


MAS glass–ceramics Crystallization kinetics Industrial waste 



This work has been supported by Commission for Scientific Research Projects (BAPK) in Sakarya University (FBYLTEZ, Project Number: 2014-50-01-042).


  1. 1.
    Goswami M, Sarkar A, Sharma BI, Shrikhande VK, Kothiyal GP. Effect of alumina concentration on thermal and structural properties of MAS glass and glass-ceramics. J Therm Anal Calorim. 2004;78:699–705.CrossRefGoogle Scholar
  2. 2.
    Opera C, Stan C, Rotiu E, Popescu C. Non-isothermal crystallization of cordierite glasses. J Therm Anal Calorim. 1999;56:611–5.Google Scholar
  3. 3.
    Goswamia M, Sarkara A, Mirzaa T, Shrikhandea VK, Gurumurthyb KR, Kothiyala GP. Study of some thermal and mechanical properties of magnesium aluminium silicate glass ceramic. Ceram Int. 2002;28:585–92.CrossRefGoogle Scholar
  4. 4.
    Wang S, Zhang C, Chen J. Utilization of coal fly ash for the production of glass-ceramics with unique performances: a brief review. J Mater Sci Technol. 2014;30(12):1208–12.CrossRefGoogle Scholar
  5. 5.
    Shamsudin Z, Hodzic A, Soutis C, Hand RJ, Hayes SA, Bond IP. Characterisation of thermo-mechanical properties of MgO–Al2O3–SiO2 glass ceramic with different heat treatment temperatures. J Mater Sci. 2011;46:5822–9.CrossRefGoogle Scholar
  6. 6.
    Obradović N, Đorđević N, Filipović S, Nikolić N, Kosanović D, Mitrić M, Marković S, Pavlović V. Influence of mechanochemical activation on the sintering of cordierite ceramics in the presence of Bi2O3 as a functional additive. Powder Technol. 2012;218:157–61.CrossRefGoogle Scholar
  7. 7.
    Zhang P, Hui W, Zhang Y, Ren X, Zhang D. Molecular dynamics simulation for the rapid solidification process of MgO–Al2O3–SiO2 glass–ceramics. J Non Cryst Solids. 2012;358:1465–73.CrossRefGoogle Scholar
  8. 8.
    Zhang P, Zhu C, Zhang D, Qiu Q, Ren X, Liu J. Molecular dynamic studies on MgO–Al2O3–SiO2 glass–ceramics. J Mater Res. 2008;23:2897–908.CrossRefGoogle Scholar
  9. 9.
    Djordjević N. Influence of Bi2O3 on sintering and crystallization of cordierite ceramics. Sci Sinter. 2005;37:189–97.CrossRefGoogle Scholar
  10. 10.
    Banjuraizah J, Mohamad H, Ahmad ZA. Synthesis and characterization of xMgO–1.5Al2O3–5SiO2 (x = 2.6–3.0) system using mainly talc and kaolin through the glass route. Mater Chem Phys. 2011;129:910–8.CrossRefGoogle Scholar
  11. 11.
    Wang J, Cheng J, Tang L, Tian P. Effect of nucleating agents and heat treatments on the crystallization of magnesium aluminosilicate transparent glass-ceramics. J Wuhan Univ Technol Mater Sci Ed. 2013;28:69–72.CrossRefGoogle Scholar
  12. 12.
    Andreola F, Barbieri L, Lancellotti I, Martin MI, Rincon JM, Romero M. Thermal approach to evaluate the sintering–crystallization ability in a nepheline–forsterite-based glass-ceramic. J Therm Anal Calorim. 2015;. doi: 10.1007/s10973-015-4960-y.Google Scholar
  13. 13.
    Yang J, Zhang D, Hou J, He B, Xiao B. Preparation of glass-ceramics from red mud in the aluminium industries. Ceram Int. 2008;34:25–30.Google Scholar
  14. 14.
    Wang J, Liu C, Zhang G, Xie J, Han J, Zhao X. Crystallization properties of magnesium aluminosilicate glass–ceramics with and without rare-earth oxides. J Non-Cryst Solids. 2015;419:1–5.CrossRefGoogle Scholar
  15. 15.
    Goel A, Shaaban ER, Melo FCL, Ribeiro MJ, Ferreira JMF. Non-isothermal crystallization kinetic studies on MgO–Al2O3–SiO2–TiO2 glass. J Non Cryst Solids. 2007;353:2383–91.CrossRefGoogle Scholar
  16. 16.
    Mohaghegh E, Nemati A, Yekta BE, Banijamali S, Rezaei F. Influence of Fe2O3 on non-isothermal crystallization kinetics and microstructure of lithium titanium phosphate glass–ceramics. J Non Cryst Solids. 2015;408:130–6.CrossRefGoogle Scholar
  17. 17.
    Wang J, Cheng J, Deng Z. Effect of alkali metal Oxide on viscosity and crystallization of the MgO–Al2O3–SiO2 glasses. Phys B. 2013;415:34–7.CrossRefGoogle Scholar
  18. 18.
    Song L, Wu J, Li Z, Hao X, Yu Y. Crystallization mechanisms and properties of α-cordierite glass–ceramics from K2O–MgO–Al2O3–SiO2 glasses. J Non Cryst Solids. 2015;419:16–26.CrossRefGoogle Scholar
  19. 19.
    Dittmer M, Müller M, Rüssel C. Self-organized nanocrystallinity in MgO–Al2O3–SiO2 glasses with ZrO2 as nucleating agent. Mater Chem Phys. 2010;124:1083–8.CrossRefGoogle Scholar
  20. 20.
    Mahadevan S, Giridhar A, Singh AK. Calorimetric measurements on as-sb-se glasses. J Non Cryst Solids. 1986;88:11–34.CrossRefGoogle Scholar
  21. 21.
    Ercenk E. The crystallization kinetics of the CaO–SiO2–P2O5–MgO–Al2O3 base glass system. J Non Cryst Solids. 2014;387:101–6.CrossRefGoogle Scholar
  22. 22.
    Belhouchet H, Hamidouche R, Torrecillas R, Fantozzi G. The non-isothermal kinetics of mullite formation in boehmite–zircon mixtures. J Therm Anal Calorim. 2014;116:795–803.CrossRefGoogle Scholar
  23. 23.
    Hu A-M, Li M, Mao D-L. Crystallization of spodumene-diopside in the las glass ceramics with Cao and Mgo addition. J Therm Anal Calorim. 2007;90:185–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Cansu Başaran
    • 1
  • Nuray Canikoğlu
    • 1
  • H. Özkan Toplan
    • 1
  • Nil Toplan
    • 1
  1. 1.Metallurgy and Materials EngineeringSakarya UniversitySakaryaTurkey

Personalised recommendations