Journal of Thermal Analysis and Calorimetry

, Volume 123, Issue 2, pp 1141–1151 | Cite as

Early hydration properties of composite binder containing limestone powder with different finenesses

  • Han Fanghui
  • Wang Qiang
  • Liu Mutian
  • Mei Yingjun


The early hydration properties of composite binder containing limestone powder with different finenesses were studied by determining the hydration heat of binder within 3 days using an isothermal calorimeter, the pore structure of hardened paste using a mercury intrusion porosimeter and the compressive strength of mortar cured for 3 days. Results show that for the samples containing fine limestone powder, the hydration heat of binder is large, the pore structure of hardened paste is fine, and the compressive strength of mortar is high compared with the samples containing coarse limestone powder at the same cement replacement ratio. The promoting effect of limestone powder on the early hydration of cement is more evident in the case of lower water to binder ratio, especially for the coarse limestone powder. The decreasing percentage of strength of mortar is far below the replacement ratio of limestone powder in the case of high water to binder ratio, especially for the fine limestone powder.


Limestone powder Fineness Hydration heat Pore structure Strength 



Authors would like to acknowledge the National Natural Science Foundation of China (No. 51278277) and Tsinghua University Initiative Scientific Research Program (20131089239).


  1. 1.
    Lothenbach B, Scrivener K, Hooton RD. Supplementary cementitious materials. Cem Concr Res. 2011;41:1244–56.CrossRefGoogle Scholar
  2. 2.
    Zhang TS, Yu QJ, Wei JX, Zhang PP, Chen PX. A gap-graded particle size distribution for blended cements: analytical approach and experimental validation. Powder Technol. 2011;214:259–68.CrossRefGoogle Scholar
  3. 3.
    Escalante JI, Gómez LY, Johal KK, Mendoza G, Mancha H, Méndez J. Reactivity of blast-furnace slag in Portland cement blends hydrated under different conditions. Cem Concr Res. 2001;31:1403–9.CrossRefGoogle Scholar
  4. 4.
    Merzouki T, Bouasker M, Houda NEI, Mounanga P. Contribution of the modeling of hydration and chemical shrinkage of slag-blended cement at early age. Constr Build Mater. 2013;44:368–80.CrossRefGoogle Scholar
  5. 5.
    Deschner F, Lothenbach B, Winnefeld F, Neubauer J. Effect of temperature on the hydration of Portland cement blended with siliceous fly ash. Cem Concr Res. 2013;52:169–81.CrossRefGoogle Scholar
  6. 6.
    Deschner F, Winnefeld F, Lothenbach B, Seufert S, Schwesig P, Dittrich S, Goetz-Neunhoeffer F, Neubauer J. Hydration of Portland cement with high replacement by siliceous fly ash. Cem Concr Res. 2012;42:1389–400.CrossRefGoogle Scholar
  7. 7.
    Han HF, Liu RG, Wang DM, Yan PY. Characteristics of the hydration heat evolution of composite binder at different temperature. Thermochim Acta. 2014;586:52–7.CrossRefGoogle Scholar
  8. 8.
    Zelic J, Rušic D, Vezǎ D, Krstulovic R. The role of silica fume in the kinetics and mechanisms during the early stage of cement hydration. Cem Concr Res. 2000;30:1655–62.CrossRefGoogle Scholar
  9. 9.
    Saraya MESI. Study physic-chemical properties of blended cements containing fixed amount of silica fume, blast furnace slag, basalt and limestone, a comparative study. Constr Build Mater. 2014;72:104–12.CrossRefGoogle Scholar
  10. 10.
    Rahhal V, Bonavetti V, Trusilewicz L, Pedrajas C, Talero R. Role of the filler on Portland cement hydration at early ages. Constr Build Mater. 2012;27:82–90.CrossRefGoogle Scholar
  11. 11.
    Bonavetti VL, Rahhal VF, Irassar EF. Study on the carboaluminate formation in limestone filler-blended cements. Cem Concr Res. 2011;31:853–9.CrossRefGoogle Scholar
  12. 12.
    Péra J, Husson S, Guilhot B. Influence of finely ground limestone on cement hydration. Cem Concr Compo. 1999;21:99–105.CrossRefGoogle Scholar
  13. 13.
    Zhang Y, Zhang X. Research on effect of limestone and gypsum on C3A, C3S and PC clinker system. Constr Build Mater. 2008;22:1634–42.CrossRefGoogle Scholar
  14. 14.
    Kakali G, Tsivilis S, Aggeli E, Bati M. Hydration products of C3A, C3S and Portland cement in the presence of CaCO3. Cem Concr Res. 2000;30:1073–7.CrossRefGoogle Scholar
  15. 15.
    Zajac M, Rossberg A, Saout GL, Lothenbach B. Influence of limestone and anhydrite on the hydration of Portland cements. Cem Concr Compos. 2014;46:99–108.CrossRefGoogle Scholar
  16. 16.
    Hawkins P, Tennis P, Detwiler R. The use of limestone in Portland cement: a state-of-the-art review. Skokie: Portland Cement Association; 2003.Google Scholar
  17. 17.
    Ramezanianpour AA, Ghiasvand E, Nickseresht I, Mahdikhani M, Moodi F. Influence of various amounts of limestone powder on performance of Portland limestone cement concretes. Cem Concr Compos. 2009;31:715–20.CrossRefGoogle Scholar
  18. 18.
    Lollini F, Redaelli E, Bertolini L. Effects of Portland cement replacement with limestone on the properties of hardened concrete. Cem Concr Compos. 2014;46:32–40.CrossRefGoogle Scholar
  19. 19.
    Knop Y, Peled A, Cohen R. Influences of limestone particle size distributions and contents on blended cement properties. Constr Build Mater. 2014;71:26–34.CrossRefGoogle Scholar
  20. 20.
    Voglis N, Kakali G, Chaniotakis E, Tsivilis S. Portland-limestone cements. Their properties and hydration compared to those of other composite cements. Cem Concr Compos. 2015;27:191–6.CrossRefGoogle Scholar
  21. 21.
    Kumar A, Oey T, Falla GP, Henkensiefken R, Neithalath N. A comparison of intergrinding and blending limestone on reaction and strength evolution in cementitious materials. Constr Build Mater. 2013;43:428–35.CrossRefGoogle Scholar
  22. 22.
    Kumar A, Oey T, Kim S, Thomas D, Badran S, Li J, Fernandes F, Neithalath N, Sant G. Simple methods to estimate the influence of limestone fillers on reaction and property evolution in cementitious materials. Cem Concr Compos. 2013;42:20–9.CrossRefGoogle Scholar
  23. 23.
    Tydlitát V, Matas T, Cerný R. Effect of w/c and temperature on the early-stage hydration heat development in Portland-limestone cement. Constr Build Mater. 2014;50:140–7.CrossRefGoogle Scholar
  24. 24.
    Kadri EH, Aggoun S, Schutter GD, Ezziane K. Combined effect of chemical nature and fineness of mineral powders on Portland cement hydration. Mater Struct. 2010;43:665–73.CrossRefGoogle Scholar
  25. 25.
    Ramezanianpour AM, Hooton RD. A study on hydration, compressive strength, and porosity of Portland-limestone cement mixes containing SCMs. Cem Concr Compos. 2014;51:1–13.CrossRefGoogle Scholar
  26. 26.
    Lothenbach B, Saout GL, Gallucci E, Scrivener K. Influence of limestone on the hydration of Portland cements. Cem Concr Res. 2008;38:848–60.CrossRefGoogle Scholar
  27. 27.
    Rahhal VF, Irassar EF, Trezza MA, Bonavetti VL. Calorimetric characterization of Portland limestone cement produced by intergrinding. J Therm Anal Calorim. 2012;109:153–61.CrossRefGoogle Scholar
  28. 28.
    Irassar EF, Violini D, Rahhal VF, Milanesi C, Trezza MA, Bonavetti VL. Influence of limestone content, gypsum content and fineness on early age properties of Portland limestone cement produced by inter-grinding. Cem Concr Compos. 2011;33:192–200.CrossRefGoogle Scholar
  29. 29.
    Yan PY, Mi GD, Wang Q. A comparison of early hydration properties of cement-steel slag binder and cement-limestone powder binder. J Therm Anal Calorim. 2014;115:193–200.CrossRefGoogle Scholar
  30. 30.
    Gallias JL, Kara-Ali R, Bigas JP. The effect of fine mineral admixture on water requirement of cement pastes. Cem Concr Res. 2000;30:1543–9.CrossRefGoogle Scholar
  31. 31.
    Tsivilis S, Tsantilas J, Kakali G, Chaniotakis E, Sakellariou A. The permeability of Portland limestone cement concrete. Cem Concr Res. 2003;33:1465–71.CrossRefGoogle Scholar
  32. 32.
    Schmidt T, Lothenbach B, Romer M, Scrivener K, Rentsch D, Figi R. A thermodynamic and experimental study of the conditions of thaumasite formation. Cem Concr Res. 2008;38:337–49.CrossRefGoogle Scholar
  33. 33.
    Schmidt T. Sulfate attack and the role of internal carbonate on the formation of thaumasite. Lausanne: Thesis EPFL; 2007.Google Scholar
  34. 34.
    Liu SH, Yan PY. Effect of limestone powder on microstructure of concrete. J Wuhan Univ Techno-Mater Sci Ed. 2010;25:328–31.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Han Fanghui
    • 1
  • Wang Qiang
    • 1
  • Liu Mutian
    • 2
  • Mei Yingjun
    • 2
  1. 1.Department of Civil EngineeringTsinghua UniversityBeijingChina
  2. 2.School of Civil Engineering and ArchitectureChongqing Jiaotong UniversityChongqingChina

Personalised recommendations